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Abstract 

The increased desire of society for plastic products has led to plastic becoming 

omnipresent in the marine environment. Due to its toxicity, abundance, and 

persistence at the sea, plastic debris is of particular concern to marine life mainly 

owing to the elevated risk of entanglement or ingestion which may prove lethal. In 

this study, various machine learning (ML) and deep learning (DL) tools were 

implemented for classifying, detecting and counting plastic marine debris in images 

and video recordings. Primarily, the importance of this research lies in the intelligent 

and swift detection and counting of plastic litter which can facilitate litter monitoring 

surveys around the world and improve estimations of plastic marine debris density in 

remote geographical areas. 

Initially, the Bag of Features (BoF) method was used to construct a plastic debris 

image classifier, which attained a classification accuracy of 62.5% when applied to 

images demonstrating plastic debris and sea life from 8 classes. However, motivated 

by the need to enhance the sophistication of the proposed classifier, the DL tool of the 

Bottleneck method (BM) was employed. By expanding the number of marine debris 

object classes that the classifier can recognise from 3 to 8, the BM attained a 4% 

improvement in the validation accuracy, which topped 90%. Interestingly, when the 

resolution of the examined images was lowered by 75% of their original size, the 

accuracy of the BM remained unchanged. 

Beyond the accurate classification of marine debris, detecting multiple objects in 

images and videos is of paramount importance. Charged with this task, the YOLOv5 

tool proved the most successful, among the YOLO family, as it attained real-time 

object detection of 34 frames per second on video footage and realised the highest 

mean average precision of 92.4% on images. Coupled with the counting tools of the 

region of interest (ROI) line and the centroid tracking, YOLOv5 proved competent in 

counting marine debris items from video footage. Particularly, the centroid tracking 

tool realised an accuracy of ≈80% when it processed a video illustrating plastic litter 

from 9 classes. 
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Lastly, for estimating the plastic litter density across the Cypriot coastlines and the 

litter’s physical dimensions, the YOLACT++ tool was utilised as it applies a mask on 

each detected litter item. Inspecting images depicting plastic litter from six beaches in 

Cyprus, this pertinent detector deduced a plastic litter density of 0.035 items/m2. 

Extrapolating to the entire shorelines of Cyprus, the YOLACT++ tool estimated about 

66,000 plastic items weighing a total of about 1,000 kg as explained in the pertinent 

video https://bit.ly/35TQVVE. Concluding, the dominant length of all documented 

plastic litter ranged from 10 to 30 cm. 

 

Keywords: Artificial intelligence, Centroid tracking, Deep learning, Environmental 

monitoring, Image classification, Marine pollution, Plastic debris detection, Region of 

interest, Plastic litter density, Size of plastics.  

https://bit.ly/35TQVVE
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1. Introduction 

Plastic pollution in the marine environment is a multi-faceted concern that 

transcends national boundaries. Ever since the advent of the commercial scale 

production of plastics dating back in the 1950s, the yearly output of polymer-based 

materials has swollen from 1.7 million tonnes in 1950 to 359 million tonnes in 2018, 

experiencing an average annual growth rate of 8.5% (PlasticsEurope, 2013; 

PlasticsEurope, 2019). Accompanying this spectacular growth, some of the plastic 

post-consumer waste which ends-up in the marine environment has surged (Ostle et 

al., 2019). According to some estimates, about 150 million tonnes of plastic debris is 

currently circulating in the world’s oceans (Jambeck et al., 2015). Projections allude 

that with the prevailing waste management policies, the accumulation of plastic 

objects is expected to soar to a staggering 600 million tonnes by 2040 (PEW 

Charitable Trusts et al., 2020). 

Alarmed by the detrimental effects of plastic litter in the marine environment, 

researchers have zeroed in on the need to quantify the abundance of plastic litter at the 

seas and the shores and endeavoured to clarify the possible threats that pose to marine 

life and, indirectly, to humans. Aiming to stem both terrestrial and marine pollution 

from plastic, the European Union banned plastic straws, stirrers, single-use plastic 

cutlery and cotton buds in 2021. However, besides macroplastics, which encompass 

plastic litter measuring longer than 5 mm in length, microplastics also exist in the 

marine environment and undesirably affect marine flora and fauna. More specifically, 

microplastics are plastic pieces or fragments with dimensions less than 5 mm (Barnes 

et al., 2009) subdivided into primary or secondary in origin. 

In-situ observations (Barnes et al., 2009; Cózar et al., 2014; Lebreton et al., 2018) 

and ocean circulation models (Maximenko et al., 2012; van Sebille et al., 2012) can 

help better pinpoint the areas that harbour high concentrations of marine debris. 

Floating marine litter tends to congregate in ocean gyres, the so-called garbage 

patches (Cózar et al., 2014; Newman, 2014) with reported densities of 890,000 

items/km2 (Eriksen et al., 2014). Another geographical hotspot of plastic detritus is 

the Mediterranean Sea. Perceived to host almost 250,000 items/km2, the concentration 
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of plastics in the Mediterranean Sea is akin to the amount encountered in the inner 

accumulation zones of the ocean gyres, which ranges between 162,000 to 368,400 

items/km2 (Cózar et al., 2015). Owing to its abundance and persistence in the marine 

environment, plastic debris is of particular concern to marine life mainly due to the 

elevated risk of entanglement or ingestion which can prove lethal to fish and birds 

(Nelms et al., 2015; Wilcox et al., 2016). 

Through the years, researchers mainly applied manual methods to address the 

problem of plastic pollution. Manual methods are primarily based on in-situ beach or 

sea collection of disposed waste items and visual counting of plastic litter along 

transects (Ryan et al., 2009; Rosevelt et al., 2013). However, current methods for 

collecting and classifying plastic debris at sea comprise mainly manual approaches 

and visual observations (Barnes et al., 2009; Goldstein et al., 2013). Such sampling 

methods are time-consuming and utilise a considerable number of volunteers and 

researchers to cope with the demanding task of collecting, counting and classifying 

marine debris. Furthermore, manual monitoring campaigns usually sample small 

polluted areas compared to the large extent of littered marine zones. Lastly, the 

utilisation of research vessels and boats for tracing and retrieving litter floating on or 

under the sea surface requires substantial financial resources which confine them to 

small areas (for more information please refer to §1.1). 

At the same time though, technologically assisted approaches which 

predominantly rest on a combination of unmanned aerial vehicle (UAV) surveys and 

machine or deep learning-based image classifiers are used to detect plastic litter at the 

seas and the coastlines. For instance, the team of Martin et al. (2018) employed a 

machine learning (ML) image classifier, namely, the random forest classifier to 

categorise three types of plastic litter, e.g., plastic containers, cups and bags, from 

airborne imagery. Moreover, Jakovljevic et al. (2020) utilised various deep learning 

(DL) tools like the Residual Networks 50 (ResNet50) (He et al., 2016), the 

ResNeXt50 (Xie et al., 2017), the Inception-ResNet v2 (Szegedy et al., 2017), and the 

Extremely Inception (Xception) (Chollet, 2017) to identify marine litter from UAV 

footage. More specifically, the team of Jakovljevic et al. (2020) differentiated three 
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plastic materials such as Polyethylene terephthalate (PET), Nylon (PA), and Oriented 

Polystyrene (OPS). Although, such techniques can recognise litter items belonging to 

generic marine debris classes yet they are unable to differentiate plastic litter among 

its distinct types. 

Appreciating the need of monitoring marine litter around the world, smart tools 

from the artificial intelligence (AI) domain can play an instrumental role. Thus, this 

research work has created various smart image classifiers and intelligent object 

detectors, using machine learning (ML) and deep learning (DL) tools, respectively, 

that can efficiently classify, detect, localise and count plastic litter from images and 

video recordings. Ultimately, this research aims to smartly and swiftly identify marine 

debris over large littered areas while mapping with more accuracy their abundance. 

Particular emphasis was allocated to the detection of plastic debris simply because 

plastics constitute the main type of anthropogenic litter in marine ecosystems. A 

couple of studies, which used manual debris retrieval and counting at the seas and the 

shorelines, have revealed that plastics make up 41% to 80% of the overall marine 

debris items (Barnes et al., 2009; Pham et al., 2014). Interestingly, estimates of the 

abundance of marine litter offered by this research were obtained without physically 

retrieving the litter items from the marine environment. Remarkably, such estimates 

were made possible by applying the DL tools on real field images and videos. 

1.1. Problem definition 

The advent of plastics is one of the world’s most important industrial advances. 

Their applications span from various domains like electrical and electronic gear, 

packaging, agriculture, construction, automobiles, and healthcare. Owing to their 

versatile nature and ease of processing, the yearly output of plastics has swollen from 

1.7 Mt, in 1950, to 359 Mt, in 2018 (PlasticsEurope, 2013; PlasticsEurope, 2019). Of 

these, 51% was manufactured in Asia, in 2018. Naturally, plastics have become an 

essential part of modern life mainly because they make or are part of a wide spectrum 

of daily life materials. However, due to their light, flexible, strong, durable, and 

undiluted nature, plastics are persistent in nature and the marine environment causing 
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various adverse consequences (Andrady, 2015; Letcher, 2020). 

Once plastics enter into the marine environment deliberately or inadvertently by 

humans, they are frequently displaced over long distances and can reach places far 

away from the point that they have been initially dumped. Due to their exposure to the 

sun, wind and water waves, floating plastic litter may fragment into smaller pieces 

(Andrady, 2015; Letcher, 2020). As expected, the plastic litter or fragments whose 

density is greater than that of the seawater, will sink and may settle in marine 

sediments. Still, an appreciable amount of floating plastic litter whose density is less 

than that of the seawater will develop on their surfaces a biofilm of bacteria and 

diatoms (Lobelle et al., 2011). Soon, a variety of marine organisms, such as, hydroids, 

bryozoans, barnacles, and ectocarpales will colonise the surface biofilm (Pabortsava 

et al., 2020; Póvoa et al., 2021). Finally, depending on the mass of the biofouling 

creatures, floating plastic litter will eventually sink in seawater until they suspend 

themselves in the mid-water column or rest on the seabed. 

Due to their durability, plastics could persist at sea from several centuries to a 

thousand years (Boucher et al., 2017). Literally, this means that almost all of the 

plastic items that have been manufactured and entered the marine environment are 

still there. Strikingly, predictions indicate that with the current waste management 

policies, the accumulation of plastics in the oceans is poised to triple to 250 billion 

tonnes by 2025 (Jambeck et al., 2015), if no decisive interventions are made by  

governments and world leaders. By one estimate, in year 2050 there will be more 

plastic litter, by weight, in the marine environment than fish (Ellen MacArthur 

Foundation, 2016; PEW Charitable Trusts et al., 2020). 

Owing to the increasing abundance of plastics in the marine environment and the 

adverse consequences that may cause to marine life and the marine environment, 

several strategies have been proposed and adopted worldwide to combat plastic 

pollution. Among them are the Circular Economy (CE) Action Plan and the Single-

Use Plastics Directive (SUPD) proposed by the European commission. Such 

strategies aim to prohibit single-use plastics and curtail their use as well as recycle 
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and reuse them (European Commission, 2016; European Commission, 2018; 

European Union, 2019). 

At the same time though, various studies attempted to estimate the abundance of 

plastic debris at the world’s seas and oceans. Floating plastic debris tend to 

congregate in the five subtropical ocean gyres, namely, the North and South Atlantic 

gyre, the North and South Pacific gyre, and the Indian Ocean gyre (Cózar et al., 2014; 

Newman, 2014). Specifically, in the North Pacific gyre, better known as the “world’s 

largest landfill” (Day et al., 1987; Harse, 2011), it is estimated that about   18 kg of 

plastic particles exist per km2 (Day et al., 1987; Harse, 2011). Additionally, in the 

South Pacific ocean gyre it was reported that about 71 g of marine plastics float per 

km2 (Eriksen et al., 2013). 

Another geographical hot spot of plastic detritus is the Mediterranean Sea, which 

contains no less than 423 g of plastic debris per km2— a density comparable to the 

inner accumulation zones of the five subtropical ocean gyres (Cózar et al., 2015). 

Besides the sea surface, the ocean floor is deemed to harbour a high concentration of 

plastics. According to Law (2016), the average density of plastic litter observed on the 

ocean bottom was projected to be 70 kg per km2, which is almost 4 times higher than 

the plastic litter density found in the five subtropical ocean gyres. 

The persistence of plastics in the marine environment can cause harmful effects to 

the ecosystem and its biodiversity, while leading to economic and social 

consequences. One adverse impact of plastics at seas is the formation of artificial 

substrates for colonisation. The colonisation of floating plastics results in the 

introduction of new marine organisms in other geographical areas thereby altering the 

endemic local biodiversity. For instance, a variety of alien and invasive species, such 

as bryozoans, barnacles, isopods, and boring molluscs, were observed in the Atlantic 

Ocean (Barnes et al., 2005), while in the Pacific Ocean, molluscs, cnidarians, and 

arthropods are the most common colonisers (Goldstein et al., 2014).  

 Another negative effect of plastic litter in the marine ecosystem is that of 

entanglement. Large floating debris, such as fishing nets, fishing gear, sixpack rings, 

plastic bands or ropes, can entangle marine creatures (Andrady, 2015; Letcher, 2020) 
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restricting their mobility, and directly or indirectly convicting them to death by 

drowning or starvation (Fossi et al., 2018; Ryan, 2018). Finally, lost pots and traps 

and derelict fishing nets continue to entrap marine life long after their initial loss, 

causing mortality to a wide range of aquatic creatures (Matsuoka et al., 2005). 

Ingestion of plastic litter by marine life is considered among the most serious 

effects that plastic pollution can induce. Ingestion of plastic litter can sometimes 

trigger distress to marine creatures as the plastic pieces can block their digestive 

system. Especially floating plastic articles have proved life threatening for predators 

of planktonic organisms and filter feeders. Only in the Mediterranean Sea, one out of 

the four examined blue sharks was found to have consumed anthropogenic litter 

made-up by 98.2% of plastic debris (Bernardini et al., 2018). Additionally, at some 

North Sea coasts, debris was found in almost four out of ten stranded whales, which 

amounted to 25 kg of anthropogenic debris per stranded whale (Unger et al., 2016). 

The ingestion of microplastics by marine organisms may also pose serious 

concerns to humans due to the potential transfer of toxic pollutants from marine life to 

humans through the food chain. Once persistent organic pollutants (POPs), which 

may exist in microplastics, are ingested by zooplankton, the toxins of POPs can 

permeate into the sea creature’s tissues. Through the food chain, the toxicity of 

microplastics eventually may reach the higher trophic levels and end-up in humans 

(Waring et al., 2018; Rezatofighi et al., 2019; Kögel et al., 2020). Strikingly, a 

number of research studies indicated that fish gut surfactants have the tendency to 

enhance the release of POPs, raising in this way the potential of their bioavailability 

(Wright et al., 2013; Bakir et al., 2014). The matter is of paramount importance 

considering that 3.2 billion people depend on fish for 20% of their mean per capita 

intake of animal protein (FAO, 2018). 

Microplastics can eventually return to humans, not only from seafood, but also 

from a variety of other products like table salt, honey, beer, or even mineral water 

(Auta et al., 2017; Cox et al., 2019). It has been reported that the toxic chemicals 

which are added to microplastics can trigger a variety of adverse consequences, such 

as, weakened immune response, curtailed reproductive activity, malformation of 



8 
 

living creatures, including humans, and cancer (Teuten et al., 2009; Setälä et al., 

2016). Reasonably, plastic pollution and its perilous effects are of particular concern 

to humans as they directly impinge on the quality of life and our health. 

Concluding, plastic pollution can visually affect highly urbanised areas and 

pristine islands (Lavers et al., 2017). This kind of pollution can diminish the aesthetic 

value of the contaminated area to its citizens as well as to its visitors. For instance, in 

Geoje Island, South Korea, pollution by marine plastics lowered tourists arrivals by 

63% inducing economic losses of more than 29 million US dollars (Jang et al., 2014). 

Additionally, at certain Brazilian shorelines, the high concentration of litter (15 litter 

items per square metre) discouraged visitors and beachgoers visiting the area, 

resulting in economic losses of 8.5 million US dollars (Krelling et al., 2017). Lastly, 

besides the unpleasant aesthetics, marine plastics can sometimes damage marine 

vessels leading to delays in goods delivering. 

Even though the negative effects of macroplastics and microplastics in the marine 

environment are well documented and widely recognised, their abundance at the seas 

and the shorelines is not precisely known as it progressively grows over time. Most 

prevailing monitoring assessments predominately rely on manual methods for 

retrieving, classifying and quantifying marine debris. Such sampling techniques are 

time-demanding and entail substantial human labour to deal with the various 

collection and clean-up steps. For example, the research team of Rosevelt et al. 

(2013), which involved 12 volunteers per beach survey, conducted monthly or semi-

monthly surveys for almost a year. Moreover, the team of Smith et al. (2014) pursued 

one-week beach surveys, with each expedition comprising 40 volunteers. 

Understandably, there is a need for expediting the process of detecting and counting 

debris at the seas whilst raising the level of successfully discerning each debris type. 

Notwithstanding the time frame or the human input, the manually surveyed 

regions are rather small in area compared to the vast size of the sea and coast zones 

which harbour marine litter. For instance, the research group of Orthodoxou et al. 

(2022) inspected 100 m of coastline transects at 20 beaches in Cyprus, covering a  

total of 2,000 m. Such coast stretch is small relative to the entire shorelines of Cyprus, 
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which span about 735 km (European Commission, 2019). Clearly, it is almost 

impossible to survey the entire island while deploying humans. More importantly, 

these activities might not be warranted not least owing to their costs, large resources 

and extended time. Likewise, the utilisation of marine vessels and other equipment for 

seagoing litter monitoring expeditions is accompanied by appreciable financial 

expenses. One clean-up expedition which took place in the Pacific ocean and used the 

Ocean Cleanup device  cost  an estimated $6 million (Rainey, 2019). 

1.2. Research objectives 

Manual litter monitoring surveys, like in-situ sea and beach collections, visual 

observations, manual image screening and counting are labour intensive processes 

and exhibit limited detection capabilities. Specifically, such sampling methods can 

sample small scale littered areas and involve substantial cohort of humans which deal 

with the various clean-up steps. Recognising that the amount of plastic debris 

dispersed in the marine environment gradually grows over time, the need of 

enhancing the sophistication of the marine litter monitoring schemes throughout the 

world using machine learning (ML) and deep learning (DL) tools constitutes a 

promising research pathway. Therefore, this study aims to swiftly and intelligently 

detect and quantify plastic debris in the marine environment. In this context, the 

research objectives of this study are as follows: 

• Evaluate how ML and DL tools can enhance smart classification and detection of 

plastic debris in the marine environment. 

• Test various DL tools tasked with detecting multiple plastic litter in images and 

videos with high accuracy.  

• Study how DL tools can predict the plastic litter density and the physical 

dimensions of real field marine plastic debris from images.  

• Investigate whether DL and counting tools can efficiently tally the number of 

plastic litter contained in video footage. 
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1.3. Thesis outline 

This work is divided into five chapters. In the first chapter, a concise description 

of the problem of plastic pollution in the marine environment is offered. In the second 

chapter, the literature review of macroplastics and microplastics is detailed and the 

various methods used for their detection and collection from the sea and the 

shorelines are explained. Chapter three reviews various ML and DL tools which are 

later utilised for the identification of plastic litter in still images and video content. 

Additionally, the principles of operation of the hydro-acoustic device used to detect 

microplastics in the water are lastly explained in this chapter.  

The results of the application of the ML and the DL techniques on the marine 

debris classification task are presented and discussed in the fourth chapter. Thereafter, 

the development of an intelligent method is presented in this section, which is 

responsible for classifying, localising and segmenting plastic detritus in images and 

videos. Furthermore, the results from the utilisation of two counting techniques for 

tallying the number of marine litter in video recordings are also described in this part. 

Lastly, beyond the research findings that relate to macroplastics, the results from the 

detection of microplastics in fresh water using a hydro-acoustic device are also 

presented here. Concluding, we summarise the research results and close with some 

future research directions. 
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2. Literature review 

This thesis chapter commences with a brief description of macroplastics and 

continues with an explanation of the prevailing methods for retrieving and classifying 

plastic litter found in the marine environment. Additionally, this section explains the 

reasons for selecting the particular ML and DL techniques employed in this 

classification task instead of other state-of-the-art solutions. Finally, the chapter 

concludes with a concise explanation of microplastics as well as the techniques used 

to identify and count them. 

2.1. Macroplastics 

Plastics are synthetic or semi-synthetic materials that can be extruded, moulded, 

cast or spun into solid objects of various shapes (Thompson et al., 2009b). Typically, 

plastics consist of polymers which are macromolecules made-up of repeating 

structural subunits (Andrady, 2015). The fact that are inexpensive, lightweight, 

durable, resilient, tolerant to corrosion, and very good thermal and electrical insulators 

renders plastics a versatile material. Particularly, the rich variety of plastics and their 

adaptability enabled the creation of a large number of plastic goods that triggered 

technological innovations and developments, savings resources and fossil fuels and 

bringing a plethora of societal benefits (Andrady et al., 2009).  

Plastic debris enter the marine environment through various channels such as 

fishing, shipping and coastal activities, the disposal of domestic sewage or are simply 

carried by the wind (Barnes et al., 2009; Woodall et al., 2014). As a result, plastics of 

various types and dimensions are encountered at the coastlines, in the seas and 

oceans. Large sized plastic debris, known as macroplastics, measure bigger than  5 

mm in length (Barnes et al., 2009). According to Andrady (2015), there are 22 types 

of plastic materials, as listed in Table 1. 
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Table 1: List of plastic materials. 

No Type of plastic No Type of plastic No Type of plastic 

1 Low-density 

polyethylene 

(LDPE) 

9 High-impact 

polystyrene (HIPS) 

17 Nylon 66 or polyamide 

66 (PA–66) 

2 High-density 

polyethylene 

(HDPE) 

10 Expendable 

polystyrene (EPS) 

18 Cellulose acetate (CA) 

3 Polypropylene (PP) 11 Poly(methyl) 

methacrylate 

(PMMA) 

19 (Ethylene–vinyl 

acetate) copolymer 

(EVA) 

4 Polystyrene (PS) 12 Poly(ethylene 

terephthalate) (PET) 

20 (Styrene–acrylonitrile) 

copolymer (SAN) 

5 Poly(vinyl) chloride 

(PVC) 

13 Poly(butylene 

terephthalate) (PBT) 

21 (Acrylonitrile–

butadiene–styrene) 

copolymer (ABS) 

6 Chlorinated 

poly(vinyl) chloride 

(CPVC) 

14 Polycarbonate (PC) 22 (Styrene–butadiene–

styrene) copolymer 

(SBS) 

7 Polybutene (PB) 15 Polyamide (PA)   

8 General purpose 

polystyrene (GPPS) 

16 Polyamide 6 (PA–6)   

 

The dominant types of plastic found in municipal solid waste (MSW) comprise 

LDPE, PP, HDPE, and PET materials (USEPA, 2011). However, the most common 

types of plastic encountered in the oceans include LDPE, HDPE, PP, PVC, PS, PA, 

PET and CA (Andrady, 2011). More specifically, LDPE is used for the production of 

plastic bags, and plastic containers, while HDPE is utilised for plastic milk jugs, toys, 

etc. Bottle caps and tapes are mainly made of PP, while soda bottles, water bottles, 

and plastic film are produced from PET. Polyamide (PA) mainly finds application in 

fishing gear and plastic fishing line. To help readers recognise the most common 

types of plastic used in everyday life uses, their pictures are displayed in Figure 1. 

Such objects comprise plastic bags, plastic bottles, plastic caps, cigarette butts, plastic 

containers, and plastic milk jugs. 
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Figure 1: Most common types of plastic used in everyday life synthetic materials.  

Researchers mainly use manual means for collecting macroplastics from the seas 

and the coastlines (Barnes et al., 2009; Newman, 2014; Woodall et al., 2014). Of 

those, surface net tows constitute the most common method for retrieving plastic litter 

floating in the sea. Surface net tows are hauled by boats at or close to the sea surface 

and are suitable for gathering floating plastic litter. These nets have various mesh 

sizes depending on the dimensions of plastic debris the researchers want to collect. 

Typically, a mesh size of 0.5 mm is employed. Additionally, surface net tows can 

have opening mouths of various sizes, which control the dimensions of the collected 

litter, and usually measure 90 cm in length and 15 cm high (Barnes et al., 2009). Once 

macroplastics are recovered from the sea, they are sorted out manually and ranked 

into distinct object categories by human operators. 

In-situ visual observations and manual collection and counting are also conducted 

by human operators for discovering macroplastics floating at sea. In the search of 

floating macroplastics, researchers onboard boats scan the sea surface using 

binoculars or their bare eyes (Barnes et al., 2009; Goldstein et al., 2013; Eriksen et 

al., 2014; Lebreton et al., 2018). As soon as they spot any potential marine debris 

item, they steer the boat close to the object and manually pick it mainly for forming a 

better picture as to the scale of the problem of plastic pollution. Likewise, in-situ 

beach collections and visual observations along transects are primarily used for 
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estimating the abundance of marine debris at the shorelines (Ryan et al., 2009; 

Rosevelt et al., 2013). 

Over time, new technologies have been applied to the marine plastics 

classification task. Technologically assisted approaches fundamentally draw from a 

combination of unmanned aerial vehicle (UAV) surveys and image classifiers 

grounded on deep learning tools (Fallati et al., 2019; Jakovljevic et al., 2020; Kako et 

al., 2020). An UAV, such as a drone, is usually equipped with a high-definition 

camera and collects airborne imagery encompassing plastic litter floating on the sea 

surface or laying at the shorelines (Hengstmann et al., 2017; Deidun et al., 2018; Moy 

et al., 2018). The recorded airborne footage obtained during these missions is later 

collated, using image processing tools, to create a mosaic of images. Thereafter, 

human operators manually identify possible plastic marine debris objects captured in 

the combined mosaic images. Even though small drones are popular, their limited 

flight time and range autonomy severely restricts their reach. Additionally, satellite 

observations are utilised for the recognition of large sized marine debris items like 

ghost boats and fishing nets (Acuña-Ruz et al., 2018; Martínez-Vicente et al., 2019; 

Topouzelis et al., 2019; Kikaki et al., 2020). However, such visual means are not 

suitable for discerning smaller size plastics measuring less than 1 m in length. 

Encouraged by the need to automate the process of smartly detecting and 

localising plastic debris in the marine environment, while gaining more insights as to 

the distribution of floating objects, has led to the invention of a new breed of methods 

for identifying plastic debris. One initiative intended to automate the identification of 

waste in the marine environment was the Floating Litter Monitoring Application 

(FLM App) (González-Fernández et al., 2017). The FLM App guides observers to 

upload pictures of floating debris found in rivers or laying at beaches and assign a 

label to each image from a drop-down list, which displays various object categories. 

The intention of the FLM App was to create a large database of labelled images of 

marine debris, use them to train their deep learning-based image classifier and 

automate the marine plastics detection process. But no evidence has been published 

to-date to prove that this method was further improved. 
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Additionally, the research team of Ge et al. (2016) proposed a partially unattended 

method for recognising marine debris on beaches. Team members used the remote 

sensing technique of light detection and ranging (LIDAR) and the support vector 

machine (SVM) (Boser et al., 1992) classifier to categorise marine debris into four 

general classes: (1) plastics, (2) paper, (3) clothes, and (4) metallic materials. 

However, this work is a semi-automatic technique and requires a lot of post 

processing to classify marine debris into their respective classes. 

Besides the detection of plastic litter on the sea surface and the shorelines, 

research teams spot and identify trash under the water with the help of autonomous 

underwater vehicles (AUVs) and DL techniques. The research team of Fulton et al. 

(2019) employed various DL tools to detect objects belonging to three general classes, 

such as, plastic materials, man-made objects or devices, and marine life. However, by 

being able to detect and differentiate among plastics objects from various categories is 

useful for knowing the types of plastic litter that pollute the seafloor. 

In the meantime, other studies have spearheaded the application of DL algorithms 

for the smart detection and quantification of plastic marine debris in still images 

and/or video recordings. For instance, the research team of Valdenegro-Toro (2016) 

utilised Forward-Looking Sonar (FLS) images and their custom convolutional neural 

network (CNN)-based image classifier to differentiate litter from five general 

categories, like metal, glass, paper, rubber, and plastic. The pertinent CNN-based 

classifier obtained 70.8% correct debris identifications (Valdenegro-Toro, 2016) 

Additionally, the team of Martin et al. (2018) utilised the random forest image 

classifier to categorise three types of plastic litter, namely, plastic containers, caps and 

bags, from airborne imagery. Clearly the more the categories of plastic litter a 

classifier can recognise, the more versatile it becomes as a classifier. 

The utilisation of DL tools for the detection and counting of plastic debris at the 

seas and the shorelines constitutes a promising research pathway that permits the 

large-scale monitoring of beaches and sea strips for litter over time. Image classifiers 

grounded on DL tools can automate the identification process of plastic debris in the 

marine environment while being remarkably accurate. Previous attempts on 
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classifying debris items in the marine environment, as presented earlier in this sub-

section, can distinguish litter from general categories like, plastic, metal, glass, paper, 

fabric and others (Valdenegro-Toro, 2016; Martin et al., 2018). In some cases, 

researchers have attempted to classify plastic debris among its distinct litter classes 

but they included only a limited number of items. Unlike other techniques, the image 

classifiers and marine debris detectors presented in this research study can distinguish 

plastic debris among several plastic litter classes, namely, plastic bottles, bags, 

buckets, fishing nets, polystyrene pieces, food wrappings, plastic fishing buoys and 

fishing nets. Also, particular attention was given to the adaptability and robustness of 

the proposed marine debris image classifiers and detectors on recognising plastic litter 

and sea life from various marine settings like the coastlines, the sea surface and the 

water column.  

Suffice to mention that the classes of marine life were added in the image datasets 

used to train, test and validate the proposed marine debris image classifiers and 

detectors so as to enhance their relevance to the marine environment. Appreciating 

that a video footage recorded at the sea surface or underwater will very likely 

encounter marine creatures, different marine species, like a fish type, dolphins and 

turtles were included in the training and test sets. Additionally, broadening the 

number of object categories in the training and the test sets rendered the investigation 

more comprehensive and enhanced the sophistication and robustness of the proposed 

techniques. Finally, from an environmental point of view, being aware of the number 

of detected sea species together with the density of the identified plastic litter items, 

indicates that this particular marine region is in need of more attention. Therefore, 

immediate actions will be needed so as to safeguard the particular area. 

Various ML and DL tools were utilised to create intelligent and versatile marine 

debris image classifiers and detectors. Initially, six image feature detectors and 

descriptors from the Computer Vision domain, that is, the Speeded-Up Robust 

Features (SURF) (Bay et al., 2008), the Features from the Accelerated Segment Test 

(FAST) (Rosten et al., 2005), the Binary Robust Invariant Scalable Keypoints 

(BRISK) (Leutenegger et al., 2011), the HARRIS (Harris et al., 1988), the Minimum 
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Eigenvalue (MinEigen) (Shi et al., 1994) and the Maximally Stable Extremal Regions 

(MSER) (Nistér et al., 2008) algorithms, were tested to extract the important 

attributes from a set of plastic litter images. Soon it was realised that the task of 

assimilating handcrafted features from marine debris images was unable to cope with 

the demanding task of categorising marine debris items into separate object classes. 

For this reason, a more sophisticated ML tool, namely, the Bag of Features (BoF) 

(MathWorks, 2016) method, was employed for sorting images illustrating marine 

debris and sea life into eight different classes. 

The BoF method has been previously utilised in other classification tasks, like the 

categorisation of time series (Baydogan et al., 2013), the retrieval of content-based 

images (Chengcui et al., 2005), the classification of natural image scenes (Maron et 

al., 1998), the automatic selection of features (Raykar et al., 2008), the robust 

tracking of objects (Babenko et al., 2011), etc. To the best of our knowledge, this 

study has pioneered the use of BoF on the marine debris classification task. 

Due to the conventional model architecture of the BoF tool, which utilises the 

SURF algorithm for retrieving the important features from the images of the dataset, 

the particular scheme exhibits limited classification capabilities. Based on the 

previous justification, the attention has shifted on more sophisticated DL tools from 

the Artificial Intelligence (AI) domain. Interestingly, DL tools have the capability of 

discovering the important features from the images by themselves without requiring 

the use of any conventional keypoint detector or descriptor. Incentivised by the need 

of enhancing the classification performance of the proposed marine debris image 

classifiers, various DL tools were employed here. 

The first DL algorithm applied to the marine debris classification task is the 

Bottleneck method (BM) which employs the Visual Geometry Group-16 (VGG16) as 

its model architecture (Simonyan et al., 2014). The VGG16 model was selected 

among other state-of-the-art image classification algorithms, such as the AlexNet 

(Krizhevsky et al., 2017) and GoogleNet (Szegedy et al., 2015) architectures, as it 

realises the highest top-5 accuracy of 92.7% when tested on the ImageNet dataset 

(Simonyan et al., 2014). Analytically, it achieved an increase of 7.6% in the 
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classification accuracy when tested on the ImageNet dataset compared to AlexNet, 

and that value dropped to 0.5% when compared to GoogleNet. 

Various other research teams have employed the VGG16 model in different 

domains. For example, the VGG16 model has been applied for the classification of 

foreign items in airport runways (Xu et al., 2018), the categorisation of malicious 

software (malware) (Rezende et al., 2018), the classification of kiwi fruits (Liu et al., 

2020b) or fish species (Hridayami et al., 2019), and many other fields including the 

marine debris classification task. For instance, the team of Papakonstantinou et al. 

(2021) employed the VGG16 model for classifying image tiles illustrating marine 

litter. Also, the team of Musić et al. (2020) utilised the VGG16 model to categorise 

litter into five general litter classes, including a plastic type. Nevertheless, the 

differentiation among the various types of plastic litter is necessary for this 

classification task in light of its ability to provide useful information about the types 

of plastic encountered in the marine environment.   

During the course of this research, it was realised that the BM which employs the 

VGG16 model is a conventional DL tool which applies a single class label per image, 

irrespective of the number of litter items presented in it. Consequently, the non-

detected objects within the images were omitted and this potentially led to an 

overestimation of the classification accuracy or the undercounting of the detected 

litter objects. But most importantly, the BM tool was unable to perform multi-object 

detection in video recordings. Being capable of identifying different litter items from 

video footage renders the image classifier more useful and valuable simply because 

video recordings can scan large, polluted areas within a short period of time. 

Grounded on the reasoning explicated earlier, the DL algorithms which can perform 

multi-object detection in both still images and videos were applied to the marine 

debris detection task. 

Firstly, the You Only Look Once (YOLO) version 3 (YOLOv3) object detection 

algorithm (Redmon et al., 2018) was used to discern and localise multiple plastic 

marine debris and sea life illustrated in images and video recordings. This particular 

DL tool was selected among other state-of-the-art object detection algorithms, like the 
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RetinaNet-101 (Lin et al., 2017b), the SSD (Liu et al., 2016), and the Faster R-CNN 

(Ren et al., 2017). Predominantly, the YOLOv3 attains the desired accuracy and 

speed trade-off. That is, when YOLOv3 was tested on the MSCOCO dataset (Lin et 

al., 2014) it achieved the same performance as the RetinaNet-101 model but it was 

3.8 times faster. Additionally, YOLOv3 realised almost the same detection 

performance as the SSD model but it took 1/3 of the time (Redmon et al., 2018). 

Lastly, even though the YOLOv3 and the Faster R-CNN tools attained comparable 

average precision, the YOLOv3 outperforms Faster R-CNN in detection speed 

(Benjdira et al., 2019). 

The YOLOv3 model was applied in many detection tasks like the recognition of 

human faces (Li et al., 2020), the detection of vehicles (Benjdira et al., 2019), the 

discovery of face masks (Singh et al., 2021), the detection of urban traffic flows 

(Huang et al., 2020), in forest fire recognitions (Jiao et al., 2019), for identifying fruit 

(Kuznetsova et al., 2020; Liu et al., 2020a; Xu et al., 2020), and in many other 

domains including the marine debris detection field. In particular, the YOLOv3 

scheme was applied to the detection of floating litter at the sea surface which 

comprised various general types, such as plastic, wood and other debris (Watanabe et 

al., 2019). Additionally, the research team of Hipolito et al. (2021), applied the 

YOLOv3 tool for the discovery of underwater animate and inanimate objects. Lastly, 

the team of Xue et al. (2021) employed the preceding model to differentiate marine 

debris items emanating from seven classes, one being plastics. Differentiated from the 

abovementioned studies, this research work can recognise debris from up to six types 

of plastics, namely, bags, bottles buckets, straws, food wrappings and fishing nets, in 

a variety of marine backgrounds, such as the sea surface or the beach.   

After the release of the YOLOv3 algorithm, YOLOv4 was published 

(Bochkovskiy et al., 2020) which draws heavily on the YOLOv3 tool but is 

characterised by better mean average precision (mAP) and improved detection speed 

when tested on the MSCOCO dataset (Lin et al., 2014). Thus, YOLOv4 improves 

upon the previous version on mAP by 10% and on the number of frames it can 

process per second (FPS), from video footage, by 12% (Bochkovskiy et al., 2020). 
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Driven by the need to enhance the detection accuracy of the proposed classification 

method while retaining its speed, provided the rationale for applying the YOLOv4 

tool on the plastic marine debris detection task. 

Other uses of the YOLOv4 model encompass the recognition of cars in railways 

(Mahto et al., 2020), the real-time inspection of railroad track parts (Guo et al., 2021), 

the identification of traffic signs (Dewi et al., 2021), for autonomous driving (Cai et 

al., 2021), for fruit detection (Parico et al., 2021; Yijing et al., 2021) and in many 

other research fields including the identification of marine litter. For example, the 

team of Tian et al. (2022) utilised YOLOv4 tool to detect two classes of plastic litter, 

namely, underwater plastic bags and broken fishing nets. Moreover, Zailan et al. 

(2021) employed YOLOv4 for the discovery of five general types of floating riverine 

debris items. Also, the research team of Tomas et al. (2022) used the YOLOv4 for 

differentiating riverine litter made of paper or plastic. Nonetheless, the preceding 

applications can recognise only a limited number of plastic litter classes while they 

perform under specific circumstances, like the surface of a river or below the seawater 

surface. 

Shortly after the release of the YOLOv4 tool, another version of the YOLO series,  

dubbed, YOLOv5, was shared online (Jocher et al., 2020). Although both YOLOv4 

and YOLOv5 tools have a similar model structure, they are written in different 

programming languages. Notably, the YOLOv5 tool is written in Python instead of C 

used in YOLOv4. Additionally, the YOLOv5 scheme embraces a focus structure in its 

feature backbone as well as an adaptive anchor strategy. The latter, enables YOLOv5 

to select anchor boxes of size and shape that closely resemble the ground truth 

bounding boxes of objects illustrated in images of the custom dataset. Consequently, 

these advances lowered the model training duration and improved the detection 

accuracy. Clearly the need to improve the detection performance of the suggested 

marine debris detectors provided the impetus for employing the YOLOv5 tool. 

The YOLOv5 tool finds applications in several domains like the detection of 

safety helmets on motorcyclists (Zhou et al., 2021), the real-time detection of fruits 

for picking robots (Yan et al., 2021), the discovery of ships (Ting et al., 2021; Xu et 
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al., 2022), the recognition of masks on human faces (Ieamsaard et al., 2021), the 

detection of breast tumours (Mohiyuddin et al., 2022), and others. Interestingly, the 

preceding scheme was also utilised for the identification of litter in the marine 

environment. Particularly, the research team of Córdova et al. (2022), utilised 

YOLOv5 for detecting common litter, including plastics, from various natural 

settings. Also, the team of Tata et al. (2021) employed the pertinent scheme to 

discover submerged trash made of plastic. Additionally, Veerasingam et al. (2022) 

utilised the YOLOv5 tool to recognise general litter belonging to seven classes. 

However, the preceding applications were capable of categorising plastic debris as a 

general litter class but were unable to distinguish the different subcategories of plastic 

litter. Noteworthy, the YOLOv5 marine debris detector of this study improves upon 

other research efforts in discerning plastic debris from up to nine litter categories. 

Moreover, the pertinent detector was coupled with two counting tools for tallying 

marine litter found in both still images and video recordings. 

During the implementation of the YOLO series tools on the marine plastics 

detection task, it was realised that the rectangular bounding box applied by these 

algorithms on each detected litter item may embrace some unwanted features from the 

image background and, consequently, lower the detection accuracy of the tools. In 

contrast, utilising an object detector competent in considering the litter’s shape during 

the detection process can generate new insights as to the size spectrum of the marine 

litter that spoil the marine landscape. Justified on the earlier reasoning, the You Only 

Look at Coefficients++ (YOLACT++) instance segmentation algorithm (Bolya et al., 

2020) was  adopted. Besides the bounding box and the class label assigned to each 

identified litter item, YOLACT++ applies a mask on each segmented marine debris 

item which encloses the litter’s area. 

The YOLACT++ tool was selected among other state-of-the-art two-stage 

instance segmentation algorithms, like the Mask R-CNN (He et al., 2017) and the 

FCIS (Li et al., 2017), as it is significantly faster due to its parallel structure and 

exceptionally “lightweight” assembly procedure. In particular, the YOLACT++ tool 

achieved a similar mask mAP compared to Mask R-CNN when tested on the 
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MSCOSO dataset (Lin et al., 2014), but it was almost 4 times faster. Moreover, the 

YOLACT++ model fared better by 4.6% in mask mAP while it was 5 times faster 

than the FCIS tool (Li et al., 2017) when tested on the MSCOSO dataset (Lin et al., 

2014). 

The detection of medical instruments in laparoscopic images (Ángeles Cerón et 

al., 2021), the discovery of surface defects on magnetic-tiles (Wen et al., 2021), 

autonomous driving (Wang et al., 2022), the identification of civil bridge cracks (Fu 

et al., 2022), and the diagnosis of psoriasis in skin images (Lin et al., 2021) are some 

of the applications of the YOLACT++ algorithm in other domains. Referring to the 

marine debris detection task, the team of Dias et al. (2022) tapped the YOLACT++ 

scheme to categorise four types of underwater litter which comprised plastic bottles, 

bags, glass bottles, and metallic cans. Still more classes of plastic litter need to be 

considered during the marine debris detection task. To this end, the YOLACT++ 

marine debris detector presented in this research improves upon previous attempts in 

its ability to discern a variety of plastic debris, like plastic bags, bottles, buckets, food 

wrappings, straws, and fishing nets encountered in both images and video footage. 

Moreover, the specific tool can recognise the preceding litter categories in a variety of 

marine backgrounds like the sea surface or the beach sand. 

Lastly, when estimating the abundance of plastic marine litter items illustrated in 

video footage, two counting methods, namely, the region of interest (ROI) line 

counting (Mazurek, 2020) and the centroid tracking (Rosebrock, 2021b) approach, 

were tested in this study. The preceding counting algorithms were coupled with the 

YOLOv5 tool and used to discover and count litter items in real field video footage 

containing marine debris. Operationally, the ROI line counting method imposes a 

virtual line on a video and tallies the number of objects that cross it. The particular 

scheme has been applied in other fields, like the counting of vehicles in highways 

(Bas et al., 2007; Memon et al., 2018) or tallying the number of people walking in 

streets (Chen et al., 2008; Yang et al., 2019; Rosebrock, 2021a). 

On the other hand, the centroid tracking counting technique tracks detected 

objects as they propagate from frame to frame and assigns them unique identities 
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(IDs) (Khachatryan, 2019; Rosebrock, 2021a; Rosebrock, 2021b). Noteworthy, 

applications of the centroid tracking method comprise the ranking of fuzzy numbers 

(Wang et al., 2006), the human face detection and tracking (Zhang et al., 2009) and 

the identification of shifts in the metapopulation range of various species tied to 

climate change (Watts et al., 2013). Concluding, it is important to note that both 

counting methods have not been previously utilised in the detection and counting of 

plastic marine debris captured in video recordings.  

2.2. Microplastics 

Microplastics are defined, in the literature, as small plastic pieces or particles with 

a length less than 5 mm (Betts, 2008; Moore, 2008; Barnes et al., 2009; Fendall et al., 

2009). Even smaller in size, nanoplastics measure less than 1 μm in length (Andrady, 

2015). Generally, microplastics can either be primary or secondary origin. Falling into 

the primary group, are plastic particles that have been intentionally manufactured to 

be microscopic, hence, belonging to the microscale category. For instance, virgin 

pellets that are used as a raw material for the creation of larger individual plastic 

products, or microbeads added to cosmetic products. Additionally, microfibres 

produced from laundering synthetic fibre clothing also fall into the microplastics and 

nanoplastics groups. 

Besides primary microplastics, there are also secondary microplastics. Secondary 

microplastics are plastic particles formed by the fragmentation of larger plastics 

already found in the marine environment or macroplastics which breakdown during 

use (Andrady, 2015; Letcher, 2020). More precisely, macroplastics decompose into 

smaller fragments by the mechanisms of biodegradation, photodegradation, thermo-

oxidative degradation and hydrolysis (Andrady, 2011). Biodegradation is facilitated 

by the action of living creatures, such as microbes, on macroplastics while 

photodegradation is caused by the exposure of macroplastics to sunlight. Thermo-

oxidative degradation pertains to the slow oxidative decomposition of plastics at 

moderate temperatures, and lastly, hydrolysis refers to the chemical reaction of 

macroplastics with the sea water (Andrady, 2011). 
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Table 2: The prevalent types of microplastics found in the marine environment. 

Courtesy: Andrady (2011). 

Plastic class Plastic origin 

Low-density polyethylene (LDPE) Plastic bags, six-pack rings, bottles, straws 

High-density polyethylene (HDPE) Milk and juice jugs 

Polypropylene (PP) Ropes, bottle caps 

Polystyrene (PS) Plastic utensils, food containers 

Foamed Polystyrene Floats, bait boxes, foam cups 

Nylon (PA) Nets and traps 

Thermoplastic Polyester (PET) Plastic beverage bottles 

Poly-vinyl chloride (PVC) Plastic film, bottles, cups 

Cellulose Acetate (CA) Cigarette filters 

 

Microplastics are introduced in the marine ecosystem mainly through domestic 

sewage water or by the fragmentation of existing macroplastics (Barnes et al., 2009; 

Woodall et al., 2014). Predominantly, the types of microplastics found in aquatic 

environments comprise low-density polyethylene (LDPE), high-density polyethylene 

(HDPE), polypropylene (PP), poly-vinyl chloride (PVC), polystyrene (PS), Nylon 

(PA), thermoplastic polyester (PET), and cellulose acetate (CA) (Andrady, 2011; 

USEPA, 2011), as illustrated in Table 2. As noted from Table 2, most of the 

microplastics mainly originate from larger size plastics, such as, bags, six-pack rings, 

bottles, straws, plastic beverage bottles and cups, plastic food containers, fishing nets 

and others (Andrady, 2011). 

Surface net tows constitute the main collection method for microplastics in 

seawater. Net tows have a mesh size of at least 300 μm and are towed by boats on or 

near the sea surface for retrieving microplastics. Once the samples are recovered, a 

delicate procedure is followed to differentiate and characterise microplastics. Initially, 

researchers clean the collected sample with distilled water to remove unwanted 

marine organisms or detritus. Subsequently, with the aid of a microscope, the 

researchers identify and count the microplastics. Finally, using spectroscopic 

techniques, like Raman spectroscopy and Fourier-transform infrared spectroscopy 
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(FT-IR), scientists can recognise the microplastic material (Andrady, 2011; Cózar et 

al., 2014; Tagg et al., 2015). 

Besides the use of surface net tows in seawater, researchers are sampling beach 

sediments in search of microplastics. With the aid of a 5 mm sieves, investigators 

sample the top layer of beach sediments— measuring approximately 3‒6 cm thick— 

in their quest for microplastics (Wessel et al., 2016). Additionally, microplastics can 

be traced in seabed sediments (Thompson et al., 2009a). Such samples are cleaned 

with distilled water and, with the aid of a microscope, microplastics are distinguished 

from other particles. Finally, researchers can identify the origin of microplastics using 

the previously mentioned spectroscopic techniques. In the meantime, other methods, 

like biopsies, can extract microplastics from the stomach or the skin of marine 

creatures (Fossi et al., 2017; Graca et al., 2017; Barboza et al., 2018; Gallo et al., 

2018). 

Current techniques for detecting microplastics in the marine environment are 

predominantly manual methods. However, streamlining the detection process of 

microplastics while deploying fewer human operators or less expensive equipment is 

a crucial step towards the mitigation of marine plastic pollution. For this reason, 

sensors that are inexpensive and easy in use and can detect and trace microplastics in 

freshwater were investigated in this study. Initially, the capabilities of devices like 

capacity proximity sensors, photoelectric sensors, and electrical resistivity 

tomography sensors were studied. However, such devices cannot operate underwater 

and are unable to detect small plastic particles in the water. For this reason, the focus 

has shifted to a hydro-acoustic device, namely, the ISA500 sensor (Impact Subsea, 

2016), which can function in the water at frequencies high enough to discover 

microplastics in the water. Concluding, expensive equipment like spectrometers were 

omitted owing to the limited financial resources available to us. 
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3. Methodology and methods 

In this chapter, the methods used for the detection of macroplastics and 

microplastics in the marine environment are presented and discussed. More 

specifically, this chapter is divided into two parts: 1) the classification and detection 

of macroplastics, 2) the detection of microplastics. In the first part, the methodology 

followed for the classification, the detection, the localisation, and the counting of 

plastic litter in the marine environment is explained. Subsequently, all of the ML and 

DL tools used in this study are presented. In the second part, the hydro-acoustic 

device used for the detection of microplastics is lastly described. 

3.1. Classification and detection of macroplastics 

Initially, to detect the important features from images illustrating plastic marine 

debris, such as, a bottle, six feature detectors and descriptors were utilised, namely, 

the SURF, the FAST, the BRISK, the HARRIS, the MinEigen, and the MSER. Each 

of the preceding algorithms assessed the image features aiming to discover the query 

object, that is, a plastic bottle in this case, found in an image scene. Furthermore, this 

process was used to detect the points of interest in an image scene that contained the 

plastic bottle. Finally, the algorithm matched the points of interest from both the 

query object and the image scene and identified the object of interest in the wider 

image scene by encompassing it in a rectangular bounding box. 

However, during the application of the SURF, the FAST, the BRISK, the 

HARRIS, the MinEigen and the MSER feature detectors and descriptors it was 

realised that the task of assimilating handcrafted features from marine debris images 

exhibits limited classification capabilities. Consequently, the techniques were not very 

competent in categorising marine debris items into distinct object classes. Based on 

this reasoning, a more sophisticated ML tool, namely, the Bag of Features (BoF) 

method, was then utilised to address the marine debris classification task. 

The BoF method was used to construct an image classifier responsible for 

categorising images portraying plastic litter and sea life in the marine environment. 
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Firstly, an image dataset was created for training, testing and validating the BoF 

image classifier. This dataset consisted of eight categories of objects, that comprised 

plastic bottles, plastic bags, plastic buckets, fishing nets, polystyrene pieces, plastic 

fishing buoys, dolphins, and sea turtles. For processing purposes, the BoF method 

utilises the SURF tool as its feature extractor designed to obtain the salient image 

features, such as, blobs, from the marine debris images. Yet, there are more useful 

details to be retrieved and assimilated by the classifier from the images of the dataset. 

Drawing on the earlier explanation and given that the DL tools, from the AI domain, 

possess the capability of discovering the important image features themselves, like the 

colour, the shape of an object in images etc., provided the inspiration to apply them on 

the marine debris classification task.  

Starting, the first DL tool utilised for the categorisation of images encompassing 

marine debris and sea life was the Bottleneck method (BM). The BM image classifier 

was capable of discerning up to eight categories of litter items, that is, plastic bottles, 

plastic buckets, plastic bags, fishing nets, plastic straws, food wrappings, flying fish, 

and “other” which comprises unrelated entities like rocks, humans, etc. Nonetheless, 

the particular classifier is a conventional image classification tool which applies a 

single class label per image. Another shortcoming that relates to the pertinent DL tool 

is its inability to categorise objects contained in video recordings. Due to the inherent 

merits of video footage, which permit scanning larger areas for marine debris in less 

time, more sophisticated DL tools like the YOLO series and the YOLACT++ 

algorithm were adopted hereafter. 

When detecting and localising multiple plastic litter and sea life appearing in 

images and video footage, the YOLOv3 tool was initially employed. This particular 

DL tool can attach a class label on each detected litter item found in an image or 

video footage while localising it by applying a rectangular bounding box around it. In 

this regard, two more YOLO tools, namely, the YOLOv4 and YOLOv5, were also 

applied here for investigating whether the specific DL algorithms can improve the 

mean average precision (mAP) of the plastic marine debris detectors. All of the 

YOLO series were trained, tested and validated on the same image datasets which 
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consist of seven litter categories: 1) the plastic bottles, 2) plastic bags, 3) plastic 

buckets, 4) fishing nets, 5) plastic straws, 6) food wrappings, and 7) a fish species. 

Summarising, among the YOLO series, the YOLOv5 object detector proved the most 

sophisticated as it realised the highest mAP on still images and video recordings. 

Equally important, the specific tool achieved real-time object detections of 34 FPS on 

video footage. 

Thereafter, to count plastic marine litter from video footage and estimate their 

abundance, two counting techniques, namely, the region of interest (ROI) line and the 

centroid tracking method, were considered. The two counting techniques were 

coupled with the YOLOv5 tool which realised real-time object detections on a video 

footage illustrating marine debris from the abovementioned seven litter classes. 

Operationally, the ROI line approach performs counting during the temporal instance 

at which the item crosses the line, while the centroid tracking approach tracks the 

geometric centre of the bounding box of a detected litter object and counts it during 

the entire time duration that the object appeared on screen. Finally, due to fact that the 

centroid tracking technique proved more adept than the ROI line counting method, it 

was selected and combined with the YOLOv5 object detector to tally plastic marine 

debris and sea life from images and video recordings. 

Finally, to predict the plastic litter density across the Cypriot coastlines and 

estimate the litter’s physical dimensions, the YOLACT++ instance segmentation tool, 

was utilised. Besides the bounding box and the class label, the YOLACT++ tool 

applies a mask on each segmented marine debris item or marine species embedded in 

images and videos. To enable the comparison with the YOLO series, the YOLACT++ 

tool was trained, tested and validated on the same object categories. In order to predict 

the plastic litter density across the Cypriot coastlines, the YOLACT++ algorithm 

processed real field marine litter images captured from various beaches in distinct 

coastlines in Cyprus. Counting all of the discovered objects and dividing them by the 

total length of the surveyed area, the plastic litter density was calculated. Lastly, 

extrapolating the computed density to the entire shorelines of the island, the method 

estimated the number of plastic articles littering the Cypriot coastlines. Concluding, 
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using the OpenCV Contours image processing tool, the applied mask on each 

identified object helped estimate the item’s physical dimensions. Collectively, the 

methodology adopted in this study for the classification and detection of 

macroplastics in the marine environment is illustrated in Figure 2. Finally, subsequent 

thesis sub-sections present all of the ML and DL tools examined in this study. 

 

Figure 2: Flow chart describing the classification and detection process of 

macroplastics in the marine environment. 

3.1.1. The SURF detector and descriptor 

Speeded-Up Robust Features (SURF) is a feature detector and descriptor 

algorithm which is invariant to scale and rotational changes (Bay et al., 2008). SURF 

was formulated on a basic Hessian matrix approximation Happrox intended to detect 

points of interest in an image. The algorithm uses box type convolutional filters and 

relies on the concept of integral images for fast computation. Integral images refer to 

the sum of all pixels in the input image I within a rectangular region formed by the 
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origin and location x in the image (Viola et al., 2001). In this way, SURF detects 

blob-like features in an image, where the determinant of the Hessian matrix is 

maximum. For a given 9×9 box filter, the determinant of the Hessian matrix 

det(Happrox) (Bay et al., 2008) can be computed from: 

( ) ( )det appro yx

2

xx y xyDH D wD= −                                          (1) 

where xxD , yyD , xyD  are approximations of a Gaussian distribution with scale σ=1.2. 

Term w is a weight applied to the rectangular regions of an image during the 

computation of the box type convolutional filters and is used to balance the 

expression of the Hessian determinant.  

 

Figure 3: The SURF algorithm can match two blobs with the same type of colour 

contrast.  

The approximated determinant of the Hessian matrix corresponds to blob response 

in the image I, at location x. These responses are logged in a blob response map for 

diverse scales intended to identify their local maxima. Herein, the change in the scale-

space is achieved by up-scaling the filter size rather than downsizing the image. 

Subsequently, the rest filters measure 15×15, 21×21 and 27×27. Concluding, a non-

maximum suppression (NMS) in a 3×3×3 neighbourhood is implemented to localise 

points of interest in the image over the previous scales. 

SURF also describes the points of interest in an image by defining the distribution 

of the intensity content within their vicinity (Lowe, 2004). The distribution of the 
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intensity content is computed using the first order Haar wavelet responses in the x and 

y directions. In this way, a reproducible orientation grounded on the information from 

a spherical area around the point of interest is fixed. Next, the SURF descriptor is 

applied to a square region aligned to the selected orientation. Finally, features among 

two similar images are matched using the sign of the Laplacian, which is the trace of 

the Hessian matrix. Drawing on this comparison, SURF identifies light blobs in dark 

backgrounds and vice-versa. As depicted in Figure 3, only features with the same type 

of colour contrast are finally matched. 

3.1.2. The FAST detector 

The Features from Accelerated Segment Test, known as FAST, is a feature 

detector capable of identifying corner points between image frames (Rosten et al., 

2005). FAST tests a feature at a pixel C in an image by analysing a 16-pixel circle 

around that pixel. Specific features are detected by FAST when the intensities of at 

least 12 adjacent pixels belonging in this circle are all above or all below the intensity 

of pixel C by a certain threshold t. Finally, the pixel intensities from the 16-pixel 

circle can be used as a feature vector which describes the examined pixel C. 

During the matching process, FAST utilises the sum squared difference (SSD) 

approach to determine the correlation among two feature vectors. Two feature vectors 

are most likely to be correctly matched if their SSD has been minimised. For instance, 

in an image frame n there are two sets of features, namely, the ,O nF  extracted from the 

previous frame and projected under motion μ, and the ,I nF  attribute that has been 

obtained from the original image. For a particular feature if  belonging to ,O nF , its 

correlation is computed by deducing the feature point in ,I nF  which minimises the 

SSD of the feature vector among the examined feature points. 

3.1.3. The BRISK detector and descriptor 

The Binary Robust Invariant Scalable Keypoints (BRISK) is a feature detector and 

descriptor which employs a saliency criterion similar to the FAST detector to identify 
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corners in an image (Leutenegger et al., 2011). BRISK applies a 9-16 mask for 

feature point detection which seeks at least 9 consecutive pixels in the 16-pixel circle 

to be adequately brighter or darker than the central pixel C for the saliency criterion to 

be satisfied. 

During the detection process of BRISK, a 9-16 mask is applied individually on 

each octave and intra-octave of the image scale-space pyramid using the same 

threshold t to discover possible regions of interest. Each octave is shaped by gradually 

half-sampling the original image while intra-octaves are located in-between octave 

layers. The first intra-octave is shaped by down-sampling the original image by a 

factor of 1.5, while the rest of the intra-octave levels are obtained by consecutive half-

sampling. Feature points of these masks are subjected to NMS manipulation in the 

scale-space continuum. Thereafter, the examined feature point must satisfy the 

maximum condition regarding its 8 adjacent pixels’ FAST scores s in the same layer. 

FAST scores s are the saliency metrics that govern the maximum threshold which is 

tasked with identifying a feature point as a corner. Additionally, the layers above and 

below should attain lower scores. Finally, a 1D parabola and partial interpolation at 

the boundaries of the patch are applied along the scale-axis to define the real size 

scale of the feature point. 

During the characterisation of a feature point, BRISK constitutes a binary string 

that concatenates the outcomes of the brightness comparison assessments. BRISK 

discovers the representative direction of each feature point to allow for orientation-

normalised descriptors, ensuring in this way the robustness of the method and its 

invariance in rotation. Subsequently, the Hamming distance is computed to match two 

BRISK descriptors. The dissimilarity between the two descriptors rests on the 

difference in the number of bits different in the two descriptors. Concluding, the team 

of Leutenegger et al. (2011) suggest that a matching Hamming distance threshold of 

90 bits is the ideal. 

3.1.4. The HARRIS detector  

Engineers Chris Harris and Mike Stephens developed the HARRIS edge and 
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corner detector to address problems related to the 3D representation of a curving edge 

(Harris et al., 1988). Specifically, the HARRIS algorithms attempted to tackle these 

problems by detecting both edges and corners in an image frame. The whole approach 

is based on Moravec’s corner detector which considers a local window in the image 

and computes the average variations of image intensity which arise from shifting the 

image window in different directions (Moravec, 1980). Generated by a window 

displacement ( )x y, , the spatial change, Ex,y, in the image is obtained from the 

following equation (Harris et al., 1988): 

, , , ,

,

2

x y u v x u y v u v

u v

E w I I+ += −                            (2) 

where Ix+u,y+v and Iu,v refer to the image intensities and term wu,v is the spatial window 

parameter which assumes unity within a defined rectangular area and zero outside of 

the domain. Finally, the HARRIS detector seeks local maxima in  min E  above a 

certain threshold t. 

Moravec’s approach encounters a number of problems associated with the 

effective detection of corners and edges in an image. Firstly, it has an anisotropic 

response because it considers only the intensity variations at a distinct set of shifts at 

every 45°. Secondly, it has a noisy behaviour due to the binary and rectangular image 

window and thirdly, it responds too readily to edges because it considers only the 

 min E . Therefore, the HARRIS detector tries to tackle the abovementioned 

problems by, firstly, applying an analytical expansion about the origin of the window 

displacement aimed at encompassing all small shifts endeavouring to recalculate the 

spatial change E. Subsequently, HARRIS utilises a smooth circular Gaussian window 

to alleviate the noise and, lastly, updates the corner measure to process the change of 

E emanating from the direction of shift. Variations in the spatial change E are then 

calculated from: 

( ) ( ) ( ), , ,
T

E x y x y M x y=                                             (3) 

where M is a 2×2 symmetric matrix. If both eigenvalues of matrix M are small and 

tend to zero, the displacements of the image window cause an insignificant change in 
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intensity E, which implies that the region is flat. If both eigenvalues are large and 

bigger than zero, displacements in any direction will induce an increase in E and this 

indicates the presence of a corner. But, if one of the two eigenvalues is large and the 

other is small, only displacements along the ridge will effect a change in E, which 

points to an edge.  

Beyond the detection of edges and corners, the HARRIS detector also considers 

the quality of the detected image features. To attain this task, it measures the edge and 

corner response, R, as follows (Harris et al., 1988): 

( )
2

R k  = − +                                               (4) 

where k is an empirical constant and α and β are the eigenvalues of the symmetric 

matrix M. Clearly, response R is positive for corners, negative for edges and assumes 

small values for flat regions.  

3.1.5. The MinEigen method 

Engineers Shi and Tomasi (1994) proposed the minimum eigenvalue method 

(MinEigen) which traces good features, like corners, in an image. A tracking 

algorithm that employs the affine motion field for representing the displacement of a 

feature window during image motion was suggested here. A pure translation model 

proved to be successful for the recommended tracking method as it attained superior 

precision. More precisely, to control the quality of the feature tracking, a dissimilarity 

measure, comparable to the HARRIS detector, was utilised to compute changes in 

appearance of a feature between the current and the first image frame. However, the 

main difference between the MinEigen and the HARRIS algorithms relates to the 

calculation of the corner response, R. Term R here depends only on the minimum 

value between the eigenvalues α and β of the symmetric matrix M, and not on the 

magnitude of the k constant, as follows (Shi et al., 1994): 

( )minR =                                                   (5) 

where a score larger than the minimum value denotes a corner point. 

3.1.6. The MSER algorithm 
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Maximally Stable Extremal Regions (MSER) is a region detector that is using an 

immersion analogy in a true linear time in the number of pixels to detect the regions 

of interest (Nistér et al., 2008). The MSER detector is a flooding simulation method 

for computing a watershed segmentation which employs a single connected 

component of pixels lending the algorithm computational efficiency and speed. 

Unlike other immersion analogy approaches, where the image is flooded with the 

same water level universally, the flooding here manifests as if the scenery was opaque 

and water is being flown at some randomly selected image pixel. 

Specifically, the region within the image in which the arbitrarily selected point 

belongs is first filled with water. Followed then, the rest of the regions are 

progressively flooded once they become accessible to the water. The water adjusts to 

the real scenery and behaves as a unified component remaining in contact to the point 

where it has originally started to flow onto the image scenery. Ultimately, the MSER 

method tracks the “downhill stream” of water, which provides information pertaining 

to the pixels’ components for all same grey-levels in the image. Once the downhill 

stream realises a minimum, the water fills that region and the respective pixels are 

processed and detected by the MSER algorithm. 

3.1.7. The Bag of Features method 

The Bag of Features (BoF) (MathWorks, 2016) method was used to construct an 

image classifier responsible for categorising images portraying plastic litter and sea 

life in the marine environment. Functionally, since images do not encompass discrete 

words, the BoF method constructs a visual “vocabulary” of features representative of 

each image category. This is accomplished by extracting the SURF features (refer to 

§3.1.1) from all images of an image dataset. Subsequently, the scheme constructs a 

visual vocabulary by using the k-means clustering method. Specifically, the k-means 

clustering is a partitioning method which is applied on the feature descriptors 

extracted from the images of a training set. During the partitioning process, the 

method iteratively groups the obtained descriptors into k mutually exclusive clusters, 

while the resulting clusters are consolidated and separated by comparable image 
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attributes. Each cluster centre signifies a feature, or a “visual word” and all of the 

visual words generate the visual vocabulary which is responsible for training the BoF 

image classifier. 

 

Figure 4: A histogram of visual word occurrences that encodes a training marine 

debris image. 

The BoF technique also employs an encoding method for counting the visual word 

occurrences in an image. Thus, a training marine litter image is encoded into a 

histogram of visual word occurrences, as illustrated in Figure 4. In turn, using the 

approximate nearest neighbour algorithm the histogram is transformed into a feature 

vector. The approximate nearest neighbour algorithm extracts histogram bins based 

on the proximity of the descriptor to a particular cluster centre. Quantitatively, the 

length of each histogram bin corresponds to the number of visual words assigned to 

each cluster. Essentially, the encoding method converts an image into a feature vector 

while creating at the same time a basis for training the classifier. Suffice to mention 

that a multiclass linear SVM classifier (Boser et al., 1992) is used for creating the 

BoF image classifier. 
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3.1.8. The Bottleneck method (BM) 

The Convolutional Neural Network (CNN) that utilises the Bottleneck method 

(BM) belongs to the family of DL tools. Its CNN architecture springs from the Visual 

Geometry Group-16 (VGG16) model, pre-trained on the large-scale ImageNet 

dataset— a database of over 14 million images divided into almost 1,000 individual 

classes (Simonyan et al., 2014). Due to this pre-training, the BM has assimilated 

important image features needed for all classification tasks and, as a result, the overall 

classification accuracy of the method improves. 

Figure 5 displays the VGG16 model architecture of the BM. Concisely, the 

presented block diagram depicts the sequence of steps for incorporating the marine 

debris images into the VGG16 model and, thereafter, are processed to extract the 

bottleneck features. Initially, images are fed into the Convolutional Block 1, which 

consists of convolutional layers and max-pooling layers. A convolutional layer is 

responsible for organising the units in an image into feature maps, while a max-

pooling layer merges the semantic features of these units into a unified feature map. 

Next, an image propagates through all of the convolutional blocks until Block 5— just 

before the fully connected layer. Henceforth, the max pooling layer just before the 

fully connected layer extracts the bottleneck features from the marine debris image 

set. The fully connected layer is arranged into one flatten layer and three dense layers. 

Specifically, the flatten layer reduces the dimensions of the feature map into a single 

column that is passed to the fully connected layer, whereas the dense layer ties the 

fully connected layer to the neural network. 
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Figure 5: Schematic representation of the VGG16 model. 

The optimisation procedure of the BM image classifier is formalised by means of 

an iterative descent of gradients in the loss function quantifying, thus the error in 

predictions (weights). As an approximation to the true gradients, the mini-batch 

stochastic gradient descent with the Adadelta learning rate was utilised. The Adadelta 

learning rate method for gradient descent was selected after a thorough investigation 

intended to identify a suitable optimiser capable of executing the marine debris 

classification task. The loss function for a batch of N samples was derived from the 

categorical cross-entropy loss function: 

( ) ( )
= =

−=
N

i
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1

log
1

Loss                            (6)                                               

where N is the total number of samples and C is the overall count of classes. Term q is 

an indicator factor, which assumes a value of 1 only if sample cix ,  belongs to its 

category c, else it is assigned a 0. Parameter p is the estimated probability produced 

by the model for sample ix  belonging to category c. Probability p is obtained from 
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the “Softmax” function: 

( )
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exp

exp
x                                                    (7) 

where probability p is a normalised exponential that accepts as input a C-dimensional 

vector x and generates as output a C-dimensional vector p of real values ranging 

between 0 and 1. Term xc refers to the elements of vector x. 

Additionally, the Rectified Linear Unit (RELU) activation function was used in 

the BM optimisation procedure and is computed using the expression 

( ) ( )0f x max x,= . ReLU is linear for input values greater than zero. In this case, the 

output value matches the input value. However, for negative input values ReLU 

behaves as a non-linear function. Under these circumstances, the output value always 

yields a zero value (Goodfellow et al., 2016). 

Concluding, in order to improve the overall classification performance of the 

proposed BM, some additions were made to the BM model as cited in sub-section A1 

of Appendix. These relate to the implementation of the code elements that augment 

the image sample population and split them into training and testing datasets. 

Additionally, the type of model loss, the type of the optimiser and the regularizers 

were adjusted for the scope of this research work. Collectively, the preceding 

modifications were designed to improve the overall classification accuracy of the BM 

while eliminating overfitting phenomena. Overfitting is the flaw where the model 

embraces the details and noise in the training set, such that it adversely affects the 

performance of the model to generalise. Finally, an extra code section was added to 

the basic BM model to predict the class of each examined image and assigned to it its 

respective class label.  

3.1.9. The YOLOv3 algorithm 

The YOLOv3 object detection algorithm (Redmon et al., 2018) was utilised for 

detecting and localising marine debris and sea life in images and video recordings. 

The preceding tool reframes the object detection task into a single regression problem. 
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This means that a single neural network assigns bounding boxes and class 

probabilities to the detected objects straight from the entire image in one assessment. 

Lastly, besides still images, the YOLOv3 tool can also recognise multiple debris items 

captured in video content.  

 

Figure 6: Predicted width, height and centre coordinates of the detected bounding box 

as applied by the YOLOv3 algorithm. 

The YOLOv3 algorithm divides the input image into an S×S grid with each grid 

cell being responsible for the detection of an object if the centre of that body falls into 

the respective grid cell. Predefined anchor boxes are generated in every grid of the 

input image and produce bounding boxes. Each anchor box makes five predictions for 

each bounding box: four coordinates x y w h
t , t , t , t  plus a confidence score. Variables tx 

and ty represent the coordinates of the centre of the predicted bounding box relative to 

the boundaries of the grid. Parameters tw and th refer to the width and height of the 

predicted bounding box relative to the entire image. Followed then, if the grid cell is 

offset from the top left corner of the image by a distance ( )x y
c , c , as depicted in 

Figure 6, and the predefined box has width and height pw and ph, respectively, then the 

coordinates of the predicted bounding box correspond to: 

 

( )x x x
b t c= +  

 

(8) 
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( )y y yb t c= +  (9) 

wt

w wb p e=  (10) 

ht

h hb p e=  (11) 

Here bw and bh are the width and height of the bounding box as offsets from cluster 

centroids, respectively. Denoted by bx and by are the centre coordinates of the 

bounding box relative to the position of the applied filter formulated on a sigmoid 

function. 

The confidence score expresses the level of confidence the model exhibits in that 

the bounding box contains an object and how accurate it thinks the predicted 

bounding box is. The confidence score is defined as follows:  

( )Pr Object IoU                                                (12) 

where ( )Pr Object  is the probability that the bounding box contains an object. Letters 

IoU stand for the intersection over union between the predicted bounding box pB  and 

the ground truth bounding box gB  such that: 

 
( )
( )

p g

p g

area B B
IoU

area B B


=


                                            (13) 

The ground truth bounding box is a rectangular box assigned to each object embedded 

in an image. The open YOLO_mark annotation tool was used to manually sketch the 

ground truth bounding boxes on each debris item found in individual training and 

testing images. Similarly, the predicted bounding box, is a rectangular box assigned to 

each object detected by the YOLOv3 algorithm. 

Therefore, for each image grid cell containing an object, a set of C conditional 

class probabilities, ( )iPr Class |Object , is computed. In order to calculate the class-

specific confidence scores for each bounding box, the confidence scores and the 

conditional class probabilities for this bounding box are multiplied as follows: 
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( ) ( ) ( )i iPr Class |Object Pr Object IoU=Pr Class IoU               (14) 

Lastly, the bounding box with the highest class-specific confidence scores is the final 

predicted bounding box. 

YOLOv3 employs the Darknet-53 network as its feature backbone (Redmon et al., 

2018). The Darknet-53 model is a hybrid approach between the network used in 

YOLOv2, Darknet-19 (Redmon et al., 2017), and residual layers. A residual layer is 

responsible for bypassing some convolutional layers. Hence, the Darknet-53 network 

consists, as the name implies, of 53 convolutional layers with successive 3×3 and 1×1 

convolutional layers and shortcut connections. Finally, the model uses global average 

pooling to make predictions as well as a 1×1 filter to compress the feature 

representation between 3×3 convolutions. Finally, certain parameters of the YOLOv3 

model were altered so as to improve its overall detection accuracy. Such 

modifications relate to changes in the dimensions of the predefined anchor boxes, the 

value of the batch size, the number of total iterations, the size of input images, etc. 

3.1.10. The YOLOv4 algorithm 

To realise further improvements in the detection accuracy of the proposed marine 

debris detector, the YOLOv4 was further considered to the problem of marine debris. 

The model architecture of the YOLOv4 tool is mainly subdivided into four parts: (1) 

the input, (2) the backbone, (3) the neck, and (4) the model head (Bochkovskiy et al., 

2020). Here, the term input refers to the input images. Functionally, the role of the 

backbone is to extract the important features from the input images while the neck is 

responsible to propagate these features from the backbone to the model head. 

Ultimately, the model head makes the predictions drawing on the input. More 

specifically, the CSPDarknet53 network is the feature extractor backbone of the 

YOLOv4 tool. This network is based on the Cross Stage Partial Network (CSPNet) 

(Wang et al., 2020) which is added on the basis of the Darknet53 model of YOLOv3. 

Notably, the Darknet53 model uses residual connections to guarantee that the network 

possesses a depth while CSPNet improves the learning ability of the network and 

reduces the computational time and memory expenditure. 
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The YOLOv4 model neck implements the Spatial Pyramid Pooling (SPP) (He et 

al., 2015) and the Path Aggregation Network (PANet) (Liu et al., 2018). SPP 

enhances the receptive field of the backbone and separates the most significant 

context features, which cause almost no reduction in the network’s operational speed. 

PANet aggregates parameters from individual backbone levels for different detector 

levels. In other words, the PANet shortens the path connecting low-level and high-

level information. Evidently, YOLOv4 makes predictions on images in the same 

manner as the YOLOv3 algorithm, which is the model head. To sum-up, a number of 

modifications were made on various parameters of the YOLOv4 basic model which 

aimed at enhancing its detection performance. Changes relate to the size of the 

predefined anchor boxes, the value of the batch size, the number of total iterations, the 

pool of the input images and others. 

3.1.11. The YOLOv5 algorithm 

One step further, the YOLOv5 object detection algorithm (Jocher et al., 2020) was 

applied to the marine debris classification task in order to investigate whether it 

managed to improve the ability to discern more plastics. Figure 7 illustrates the 

YOLOv5 model architecture. Functioning together the Cross Stage Partial Network 

(CSPNet) and the Focus structure (Wang et al., 2020) made the feature backbone of 

the YOLOv5 model which extracted the important attributes from the input images. 

Structurally, each BottleneckCSP module consists of two convolutional layers 

comprised of a 1×1 and a 3×3 filter. Finally, the scheme employs the Spatial Pyramid 

Pooling (SPP) layer (He et al., 2015) and the Path Aggregation Network (PANet) (Liu 

et al., 2018). 

The YOLOv5 tool also utilises an upsample layer which upgrades the current 

resolution of a layer to that of the previous layer. Additionally, the particular scheme 

employs a concatenation layer which accepts inputs of the same size along a specified 

dimension and merges them into one output. Collectively, the YOLOv5 embraces 

four distinct models ranging from the smallest YOLOv5s, with 140 layers, to the 

largest YOLOv5x with 284 layers. Concerning this research work, the largest 
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YOLOv5x model was selected as it yields the highest mean average precision when 

applied to the MSCOCO dataset (Lin et al., 2014). 

 

Figure 7: The YOLOv5 model architecture. 

To this end, a number of parameters of the YOLOv5 model were altered so as to 

enhance its detection performance. Analytically, the dimensions of the predefined 

anchor boxes, the value of the batch size, the number of total iterations, the number of 

the input images were some of the modifications adopted during the training and 

testing phases of this scheme. Furthermore, to measure the number of litter items 

illustrated in videos, both the ROI line counting tool and the centroid tracking 

technique were implemented into the original YOLOv5 model, as described in §A2 in 

the Appendix, respectively. In turn, for the centroid tracking counting method, a 

customised thresholdFrames parameter was introduced which considers the minimum 

number of frames that a detected item must be present on screen for the algorithm to 

count it. 

3.1.12. The YOLACT++ algorithm 

Considering that the YOLO series can only attach a rectangular bounding box on 

each detected litter item which may enclose unrelated objects from the object’s 

background, the focus has shifted on more advanced DL tools which are suited for 

segmenting the area of the detected litter. For this reason, the YOLACT++ instance 

segmentation algorithm (Bolya et al., 2020) was tested here as it can detect, localise 
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and segment multiple marine debris items and sea life in still images and video 

recordings. That means that the particular scheme applies, other than the bounding 

box and the class label, a coloured mask on each recognised item. Interestingly, the 

mask drawn on each item can provide valuable information about the body’s physical 

dimensions. 

 

Figure 8: The YOLACT++ model architecture. 

Algorithmically, YOLACT++ is a one-stage instance segmentation approach that 

is subdivided into two parallel tasks. Initially, it produces a set of prototype masks. 

Then it predicts the per-instance mask coefficients. Followed then, it linearly 

combines the output from the previous two tasks to produce the final instance masks. 

The architecture of the YOLACT++ algorithm appears in Figure 8. This structure uses 

Residual Networks-101 (ResNet-101) (He et al., 2016) with Feature Pyramid 

Networks (FPN) (Lin et al., 2017a). Hence, the YOLACT++ model consists of blue 

coloured blocks (C1–C5), which indicate the ResNet-101 feature backbone layers 

with low values in the prototypes, and orange blocks (P3–P7) which indicate the FPN 

layers with high values in the prototypes. At the end, the mask coefficients are 
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generated in the prediction part as well as the prototype masks in the prototype 

generation branch (protonet).  

Functionally, the protonet predicts a set of prototype masks for the entire image by 

using the P3 block which is the largest and the deepest feature layer. In turn, this 

enables the assignment of higher quality masks and enhances the performance of the 

algorithm on smaller objects. In parallel, four bounding box regressors and a class 

confidence are generated for each prototype mask. Prototype masks and mask 

coefficients are funnelled through the non-maximum suppression (NMS) and score 

thresholding, where only detections with high confidence can survive. The dominant 

mask is ultimately cropped with the imposed bounding box to produce the final mask 

prediction on each object. 

3.1.13. The ROI line counting technique 

Another line of investigation of this study dealt with the estimation of the 

abundance of plastic litter from video footage using two counting methods. First, the 

region of interest (ROI) line counting method was utilised, which imposes a virtual 

line on a video and tallies the number of objects that cross it. The ROI line counting 

process is accomplished by considering the coordinates of the centre of the bounding 

box of each detected object (Mazurek, 2020). Each predicted bounding box applied on 

an individually recognised object exhibits coordinates generated by the object 

detection algorithm. Simultaneously, the ROI line is drawn on the screen which 

possesses its own coordinates while its location remains fixed for the duration of the 

video. Thereafter, objects detected by the image classifier and whose coordinates 

cross this drawn line are finally summed up by the counting method. Operationally, 

an object’s bounding box is displaced over a particular number of pixels between 

frames. Hence, the ROI line needs a certain thickness such that the centre of the 

object’s bounding box falls within the line at some point in time. 
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Figure 9: The ROI line which was placed in the middle of the video frame. 

Once a detected object has passed the ROI line, the coordinates of the centre of its 

bounding box were henceforth deduced. Next, that point was checked if it lies within 

the ROI line, which was placed in the middle of the frame, as depicted in Figure 9. 

Each bounding box has also a corresponding label. Thus, when the bounding box 

crossed the ROI line, the item count for that particular class label was incremented by 

one. Likewise, the counting tool scans all bounding boxes present on screen during 

the video and checks if their coordinates intersect the ROI line. 

As of presently, implementations of the ROI line counting tool have only 

addressed the case where all objects that are crossing the line are of the same 

category, for example, people or vehicles, and no other category (Bas et al., 2007; 

Chen et al., 2008; Memon et al., 2018; Yang et al., 2019). Thus far, to the best of our 

knowledge, the research proposed here constitutes the first attempt to count objects 

from up to nine different object categories. Once the original code of the ROI line 

counting method was implemented in the YOLOv5 model, it was modified 

accordingly so as to enable the detection and counting of items from nine distinct 

classes, which comprised plastic bottles, bags, buckets, fishing nets, plastic straws, 

food wrappings, a fish species, aluminium cans, and cigarette butts. 
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3.1.14. The centroid tracking counting method 

The second counting technique utilised here for calculating the abundance of 

plastic debris and sea life displayed in a video footage was the centroid tracking 

method. This technique tracks identified objects as they propagate from one video 

frame to another frame and assigns them unique identities (IDs) (Khachatryan, 2019; 

Rosebrock, 2021a; Rosebrock, 2021b). Effectively, the centroid tracking method 

considers the centre of the bounding box of a detected object as its centroid and 

assigns to it an identity (ID), as illustrated in Figure 10. 

 

Figure 10: The centroid tracking technique tracks identified marine debris items by 

assigning them an identity (ID). 

Operationally, the centroid tracking method accepts as an input a set of bounding 

boxes along with their respective coordinates and class labels for each frame and 

creates unique IDs for each of the detected item. In this way, the method tracks the 

identified bodies as they project from frame to frame. Centroid tracking is performed 

under the assumption that for a given object, the Euclidean distance between the two 

centroids for frames tf  and t 1f +  is smaller than all other distances between the 

objects (Rosebrock, 2021a). To this end, object tracking in videos is accomplished by 
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registering the centroids of the bounding boxes of the detected objects as these are 

moving from one frame into the next.  

The centroid tracking method features the maxDisappeared parameter which 

defines the number of consecutive frames during which an object remains undetected 

before it is deregistered, or no longer tracked (Rosebrock, 2021b). Additionally, to 

overcome the flaw of counting the same item multiple times due to the incorrect 

categorisation between frames, a customised thresholdFrames parameter was 

introduced which considers the minimum number of frames that an object must be 

present on screen for the algorithm to count it. These frames are not necessarily 

successive, that is, as long as a given object is cumulatively screened for a 

thresholdFrames number of frames before it is deregistered, that object will be 

counted. Lastly, similar to the ROI line counting method, the original python code of 

the centroid tracking technique was added to the YOLOv5 model while it was adapted 

accordingly to enable the recognition and counting of various classes of objects. 

3.2. The detection of microplastics 

3.2.1. The hydro-acoustic device 

This subsection presents the hydro-acoustic device, namely, the ISA500 sensor 

(Impact Subsea, 2016), utilised for the detection of microplastics in the fresh water. 

Operated at high frequencies, in underwater conditions, the ISA500 sensor can 

provide proximity measurements with a very high accuracy even at long stretches 

spanning up to 120 meters. The main specifications of ISA500 hydro-acoustic device 

are outlined in Table 3. Notably, the default frequency of operation of the sensor is 

500 kHz but it can function at a range of frequencies between 400 and 600 kHz. 

Operationally, the hydro-acoustic device exploits sound wave pulses in order to 

determine the distance. Sound wave pulses propagate in the water until they encounter 

an obstacle. When a pulse hits the body, part of the pulse is reflected back to the 

ISA500 sensor. Upon reaching the sensor, the reflected sound signature is detected by 

the sensor’s receiver and the time needed for the pulse to make this journey is 

recorded. Then, the distance of the obstacle is computed as a product of speed and 
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time, where the speed of sound in the water is typically around 1,500 m/s. Finally, the 

distance is 50% of that journey. 

Table 3: Specifications of ISA500 sensor. Adapted from Impact Subsea (2016). 

Parameter Characteristics 

Frequency 500 kHz default (400‒600 kHz selectable) 

Range 0.1 to 120 m 

Resolution 1 mm 

Beam angle 6º conical at 500 kHz 

Signal Monotonic 

Pulse length User defined 

 

The operation of ISA500 sensor relies on the sonar equation: 

( )SL TL NL DI DT − − −                                        (15) 

where the Detection Threshold (DT) defines the minimal signal to noise ratio required 

for the sonar device to detect an acoustic signal. The Source Level (SL) is the power 

the acoustic pulse possesses as it enters the water, while the Transmission Loss (TL) 

refers to the dispersion of the acoustic pulse in the water. The Noise Level (NL) is an 

environment specific variable which is governed by the noise originating from marine 

life, wind, rain, anthropogenic sources and other machinery. Finally, the Directional 

Index (DI) reduces the noise level by utilising a 6º conical acoustic beam. 
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4. Results and discussion 

This chapter is dedicated to the research findings of this study. First, the results 

from the utilisation of the ML tools like the six feature detectors and descriptors— 

SURF, FAST, BRISK, HARRIS, MinEigen, and MSER algorithms —and the BoF 

method on the detection of plastic debris are outlined. Next, the classification results 

of the DL tools which comprise the BM, YOLOv3, YOLOv4, YOLOv5, and 

YOLACT++ tools as applied to marine plastics are presented. Thereafter, the findings 

from the utilisation of two counting techniques, namely the ROI line and the centroid 

tracking methods, on tallying marine litter in real field video recordings are offered. 

Finally, the observations from the discovery of microplastics in the water using the 

ISA500 hydro-acoustic device are listed in this section.  

4.1. Detecting plastic bottles in images 

Initially, the six feature detectors and descriptors, namely, the SURF, FAST, 

BRISK, HARRIS, MinEigen, and MSER were evaluated on the discovery of the 

important image attributes from images illustrating plastic debris. Specifically, each 

algorithm was assessed to find the image features from a query object, that is, a 

plastic bottle in this case, found in an image scene. Figure 11 depicts the procedure 

adopted for the detection of a plastic bottle. Initially, each algorithm “reads” the query 

object and identifies its points of interest, which are the important features of this 

object. Similarly, this procedure was also adopted for the detection of points of 

interest in an image scene that includes the query object. Thereafter, the algorithm 

matches the points of interest from both the query object and the image scene. Finally, 

the method locates the query object, which is a bottle, in the image scene by applying 

a rectangular bounding box around it. 
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Figure 11: Flow diagram depicting the process, adopted by the six feature detectors 

and descriptors, applied to the discovery of a plastic bottle. 

The six feature detectors and descriptors extract different kinds of features from 

the images, as demonstrated in Figure 12. For this reason, it was deemed necessary to 

evaluate the capabilities of the feature detectors and descriptions on more images 

capturing plastic debris. For that purpose, ten distinct images illustrating plastic 

bottles, as depicted in Figure 13, were employed. During the appraisal of all six 

feature detectors and descriptors on the detection of ten different images featuring 

plastic bottles, the computational time and the overall detection accuracy for each 

algorithm, as listed in Table 4, was recorded. The computational time is the temporal 

duration needed for each algorithm to identify and locate the plastic bottle in an image 
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scene while the overall detection accuracy is the proportion of the successfully 

identified samples over all tested samples. 

 

Figure 12: The detected points of interest from the six feature detectors and 

descriptors. 

Observing Table 4, it is evident that the SURF, the MinEigen, and the MSER 

algorithms attained the best detection accuracy. However, the SURF tool realised the 

fastest computational time for each detected bottle outperforming the rest detectors in 

terms of the accuracy-speed trade-off, which normally ranges between 60 to 80% for 

about 100 to 200 ms (Laptev et al., 2008; Heitz, 2014). Specifically, the algorithm 

attained an overall detection accuracy of 60% and a computational time of 3 s for each 

image. Reasonably, the SURF was chosen to be the feature detector and descriptor 

responsible for obtaining the points of interest from images illustrating plastic litter in 

the marine environment. 
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Figure 13: Examples of ten images of plastic bottles tested by the six feature detectors 

and descriptors. 

Table 4: Detection performance of the six detectors and descriptors when applied to 

ten images displaying a plastic bottle, shown in Figure 13. 

Algorithm 
Computational 

Time (s) 

Overall Detection 

Accuracy (%) 

SURF 3 60 

FAST 3 30 

BRISK 4 30 

HARRIS 3.25 40 

MinEigen 4.42 70 

MSER 4.66 60 

 

The need of identifying and localising more object categories while enhancing the 

sophistication of the image classifier provided the impetus for employing the Bag of 

Features (BoF) method. The BoF constructed an image classifier which was trained 

and tested on several images of plastic litter and sea life. Subsequently, it was 

validated on newly provided images of the same object categories. The main findings 

of this evaluation are presented in the following sub-section. 
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4.2. Classification of plastic litter images 

The Bag of Features (BoF) method was initially used to construct an image 

classifier designed to categorise images depicting plastic debris and sea creatures in 

the marine environment. Firstly, an image dataset was created for training and testing 

the BoF image classifier. The points of interest from images belonging to this dataset 

were extracted using the SURF algorithm. Practically, the dataset consisted of eight 

categories of objects: six types of plastic marine debris and two types of marine life. 

The eight classes comprised: (1) plastic bottles, (2) plastic bags, (3) plastic buckets, 

(4) fishing nets, (5) polystyrene pieces, (6) plastic fishing buoys, (7) dolphins, and (8) 

sea turtles. Each category consisted of 35 images, which overall amount to 280 

images. All images of this dataset were retrieved from the ImageNet dataset (Deng et 

al., 2009). 

Due to the insufficient number of images and knowing that conventional ML 

image classifiers, like the BoF, require thousands of images to enhance their 

classification accuracy, data augmentation (DA) manipulations were utilised. Here, 

DA manipulations refer to image processing techniques applied to the images of a 

dataset with the intention of creating a larger pool of images. During DA adjustments, 

images are subject to random transformations and normalisation operations. Rotation 

of the image, random alteration of the image’s width and height, vertical or horizontal 

translation of the image, rescaling, random change in the shear range, zooming, 

horizontal flipping or filling the image with new pixels after a rotation or shift are 

some of the operations. After the DA operations, the image dataset grew from 280 

images to 10,400 images, with each category containing 1,300 samples. 

The augmented dataset was later divided into two subsets: (1) the training and (2) 

the test set. As the names dictate, the training set was used to train the BoF image 

classifier while the test set was utilised to test its classification capabilities. The 

training and testing processes of the BoF image classifier were performed on an Intel® 

Xeon® (CPU 2.40 GHz) processor with an NVIDIA Quadro® K4200 graphics card. 

Findings of the training and the testing assessments, are shown in Figure 14 and 

Figure 15. 
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Figure 14: The accuracy of the BoF image classifier when varying the number of 

images in the training set. 

 

Figure 15: The computational cost of the BoF image classifier when altering the 

number of images in the training set. 

Figure 14 presents the classification accuracy of the BoF method while Figure 15 

depicts the overall computational time by varying the number of images allocated to 

the training set. Here, the classification accuracy is the proportion of the correctly 

identified images over all tested samples while the computational time is the total 

time needed for the testing process. Observing these two figures, results illustrate that 

the proportion of 80% of the images allocated to the training set and the remaining 

20% of images in the test set generates the highest classification accuracy of 79%, 

while the computational time remains at the same level of almost 90 s. Meanwhile, 

other studies mention that the optimal ratio for splitting images into the training and 

test sets is 80% and 20%, respectively (Roshan, 2022). Allocating 90% of images to 
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the training set gives the BoF the opportunity to assimilate features from more 

images, but this is accompanied by a surge in the computational time. Seventy percent 

of images or less allocated in the training set produced inferior testing accuracy. 

Once the training and testing procedures were completed, the BoF image classifier 

was validated on a totally new image dataset. This dataset is called the validation set 

and is responsible for evaluating the classification capabilities of the BoF method. 

The validation set contained 40 images in total or five images in each of the eight 

object categories. Following the completion of the validation process, a classification 

accuracy of 62.5% was obtained, meaning that 25 images out of 40 were correctly 

categorised by the BoF image classifier. 

Drawing on the previously mentioned results, it was realised that there is a need of 

enriching the training set with more images so as to enhance the classification 

capabilities of the BoF method. However, due to the conventional architecture of the 

BoF scheme, a possible increase in the number of training image samples is expected 

to warrant a higher computational cost without a marked improvement in the 

classification accuracy. At the same time though, DL algorithms as applied to other 

detection tasks attained superb performance. Based on the previous reasoning, various 

DL tools were applied to the marine plastics classification task so as to investigate 

whether they can enhance the sophistication of the proposed image classifiers.  

The first DL tool utilised for categorising images of marine debris was the BM. 

The classification capabilities of this scheme were tested on categorising images of 

plastic debris floating on or near the sea surface. Initially, the BM image classifier 

distinguishes between three categories of litter, that is, (1) plastic bottles, (2) plastic 

buckets, and (3) plastic straws. The images belonging to this dataset were obtained 

from the ImageNet dataset (Deng et al., 2009). Each of the three categories consisted 

of 250 images collectively adding up to 750 images. DA manipulations were 

performed here which refer to geometrical transformations applied to images, e.g., 

zooming, shifting, flipping, rotation, etc. As a result, the enlarged dataset contained a 

total of 4,000 images in each object category (Kylili et al., 2019). 
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Figure 16: Flowchart depicting the overall classification process of the BM when 

applied to images of plastic marine debris. 

Followed then, the augmented dataset was randomly split in two subsets, namely, 

the training set and the test set. A share of 80% of the images was assigned to the 

training set whereas the remaining 20% of the images to the test set. Consequently, 

each training category contained 3,200 images, while discrete testing classes featured 

800 images. In other words, the BM image classifier was trained on 9,600 images and 

tested on 2,400 images. Having completed the training and testing procedures, the 

validation set was employed in order to evaluate the identification performance of the 

BM image classifier. The preceding process is summarised in Figure 16. 

Computationally, the training and the testing processes of the BM image classifier 

were executed on an Intel® Xeon® (CPU 2.40 GHz) processor with an NVIDIA 

Quadro® K4200 graphics card. Table 5 presents the hyperparameters and their optimal 

values that were selected during the training phase of the particular model. As listed 

in Table 5, the optimal batch size was set to 10 images, the dropout value was fixed to 
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0.25, a learning rate of 0.001 was chosen whereas the Adadelta optimiser was 

employed during the training stage of the BM image classifier. 

Table 5: Hyperparameters and their optimal values used during the training stage of 

the BM image classifier. 

Hyperparameter Tested value(s) Optimal value 

Batch size 10 images 10 images 

Dropout value 0.25, 0.50 0.25 

Learning rate 0.0001, 0.001, 0.01 0.001 

Optimiser Adam, SGD, RMSprop, Adadelta Adadelta 

 

 

Figure 17: Plots display the training and testing loss (left) and the respective accuracy 

(right) over 50 epochs. 

Figure 17 displays the training and testing performance of the BM image classifier 

with respect to loss (left plot) and accuracy (right plot). Both the loss and accuracy 

results were obtained from the training and test sets over 50 epochs. The number of 

epochs indicates the times that the entire dataset is processed through the network to 

produce the best possible classification outcome. Converging trends between training 

accuracy and loss curves reinforces the credibility of results. The training accuracy of 

the BM image classifier reached a maximum of almost 100% with a loss of about 

0.01, while the testing accuracy topped at about 99% with a loss of almost 0.04. 
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Figure 18: A matrix of images demonstrates the ability of the BM image classifier to 

correctly categorise images illustrating plastic bottles, buckets and straws. 

Once the training and the testing phases of the BM image classifier converged, the 

validation assessment followed. Individual validation sets consisted of 55 newly seen 

images of plastic marine debris per object category or a total of 165 validation 

samples. During this appraisal, the BM image classifier correctly identified 53 images 

of plastic bottles, 55 images of plastic buckets, and 33 images of plastic straws. 

Overall, recognising a total of 141 out of the 165 freshly provided images of plastic 

marine debris resulted in a validation accuracy of almost 86%. Being relatively high, 

the validation accuracy lends credibility to the effectiveness of the proposed BM 

image classifier. Concluding, a selection of correctly labelled plastic marine debris 

images is illustrated in Figure 18. 

As part of a rigorous effort to further scrutinise the trustworthiness of the BM 

image classifier, it was deemed necessary to examine three scenarios. The first one 

compared different types of regularizers as applied to the context of the BM training 

process. Secondly, a parametric investigation explored the performance of the BM 

image classifier by varying the number of images in the test set. Finally, the 

performance of the classifier was tested as a function of the number of images 

generated from the DA manipulations.  
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The first scenario was designed to assess the performance of the BM image 

classifier by implementing different regularizers during the training process. 

Regularizers permit the assignment of “penalties” on the parameters of the model’s 

layers or on a layer’s activity during the optimisation stage. These penalty values are 

added in the categorical cross-entropy loss function (equation (6)) used to optimise 

the network weights. Accordingly, a particular regularizer can improve the 

performance of the image classifier and lower the risk of encountering overfitting in 

the learning process. 

Overall, the three regularizers that were examined during the first scenario 

included: ℓ1, ℓ2 and ℓ1_ℓ2. Symbol ℓ1 refers to the Least Absolute Shrinkage and 

Selection Operator (Lasso) regression (Hastie et al., 2009) which assigns zero values 

to the weights of uninformative features by virtue of shrinkage. To improve the 

classification accuracy, the Lasso regression method adds the absolute value of 

magnitude of the coefficient as a penalty term to the loss function. Regularizer ℓ2, also 

known as the Ridge regression method (Hastie et al., 2009), prevents excessive 

fluctuations in the weights and forces them assume small values by inserting the 

squared magnitude of the coefficient as the penalty term to the loss function. Denoted 

by ℓ1_ℓ2, this regularizer combined the two previous regression methods. Lastly, to 

enable the comparison between results one of the training processes was conducted in 

the absence of a regularizer.  

The performance of the BM image classifier using different regularizers and the 

absence of a regularizer is depicted in Figure 19. Although the case lacking a 

regularizer yields the highest testing accuracy, yet its increasing loss over the epochs 

points to overfitting. For that reason, this case was discarded from the investigation. 

Since the training accuracy for all cases reached a value of almost 100%, for 

comparison purposes, we focused on the testing accuracy. Likewise, because the 

training loss for all cases was almost negligible, it was decided to exclude these 

findings from the respective plots. Notably, the case which blended the Ridge and the 

Lasso regressions appears to perform better than using each regression method 

distinctively and produced the highest classification accuracy. More precisely, when 
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both the testing accuracy and the testing loss were considered, regularizer ℓ1_ℓ2 was 

selected as it fared slightly better than the rest regularizers. 

 

Figure 19: The testing loss (left) and testing accuracy (right) of the BM image 

classifier in the absence of a regularizer and accompanied by different regularizers.  

 

Figure 20: Left and right plot depicts the testing loss and testing accuracy of the BM 

image classifier, respectively, over 50 epochs, by increasing the proportion of the 

images allocated to the test set from 20 to 50%. 

The second line of investigation inspected the classification performance of the 

BM by altering the number of images allocated to the test set. Specifically, the 

percentage of the images fed into each test set comprised progressive proportions of 

20%, 30%, 40%, and 50% of the images. All cases utilised the ℓ1_ℓ2 regularizer. For 

the 20% case, 3,200 images made-up the training set and 800 images the test set. In an 

analogous fashion, for the 30% case, the training set consisted of 2,800 images while 

the test set included 1,200 images. Respectively, for the 40% case, 2,400 images 

made-up the training set and 1,600 the test set. Finally, in the 50% case, the number of 

images was equally split into 2,000 in the training and 2,000 in the test set. 
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Figure 21: Validation accuracy of the BM image classifier while adjusting the number 

of images assigned to the test set. 

The left graph in Figure 20 shows the testing loss and the right the testing 

accuracy over the 50 epochs for all four cases which utilised 20%, 30%, 40%, and 

50% of the images as a test set. As one can observe, the smallest the size of the image 

set, which made-up the test set, the better was the performance of the BM image 

classifier. This result emerged because the training set had a larger pool of images and 

the method’s accuracy improves when the classifier processes more representations of 

images in the training set and learns on them. Reasonably, a further increase in the 

number of images in the test set would lead to a small drop in the testing accuracy. 

The same observation is also supported by Figure 21 which displays the validation 

accuracy of BM on newly provided data as a function of the number of images 

allocated to the test set. By fixing the fraction of images in the training set to 0.8 with 

the remaining 0.2 assigned to the test set, the validation accuracy reached its highest 

value at almost 86%. In other words, the BM image classifier successfully identified 

141 out of the 165 images which formed the validation set. 

The third and final scenario examined the identification capabilities of the BM by 

varying the number of images generated after DA manipulations. The number of 

images in each object category was increased from 1,000 to 4,000 in increments of 

1,000, as illustrated in Figure 22. Each case was run with regularizer ℓ1_ℓ2 while the 

test set encompassed 20% of the images. Referring to the right graph of Figure 22, 

one can observe that the larger the number of images in each object category, the 

better was the testing accuracy of the BM image classifier. Owing to the larger image 
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set, the classifier becomes more efficient in identifying plastic marine debris articles 

as it learns on more image representations. Concluding, a comparable trend can be 

noticed in Figure 23 where the validation accuracy the BM image classifier attained 

over freshly provided images improves as the number of images per category expands 

from DA manipulations. 

 

Figure 22: The testing loss (left) and accuracy (right) of the BM image classifier for 

an increasing number of images in each object class ranging from 1,000 to 4,000, as 

generated by DA. 

Given that the types of plastic litter encountered in the marine environment are 

more than three, the number of object classes was broadened from three to eight. For 

this reason, to undertake a more demanding classification process, a more 

sophisticated BM image classifier is proposed hereafter. More specifically, this 

classifier can now distinguish between six types of plastic debris and one kind of 

marine life. Additionally, the new BM image classifier is also able to recognise 

objects that are neither plastics nor marine life and rank them in the “other” category. 

Lastly, the scheme is also able to classify marine debris found both at the sea and the 

shorelines (Kylili et al., 2020). 
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Figure 23: Plot of validation accuracy versus an increasing number of images in each 

object category obtained from data augmentation (DA). 

The dataset used to train the more sophisticated BM image classifier consists of 

eight categories of items, namely, (1) plastic bottles, (2) plastic buckets, (3) plastic 

bags, (4) fishing nets, (5) plastic straws, (6) food wrappings, (7) flying fish, and (8) 

“other” which comprises articles such as boats, shipping containers, rocks, swimmers, 

etc. Notably, the addition of the “other” category enhances the usefulness of the 

proposed method by rendering it able to distinguish marine debris from some 

unrelated objects that can be encountered at the sea and the coast. The images of this 

dataset were mainly retrieved from ImageNet (Deng et al., 2009) and the non-profit 

organisation Algalita which provided us with marine debris images and videos 

acquired during their boat expeditions dating in 2014 (Algalita, 2014b). Figure 24 

displays a sample of these images in which object a) is a plastic bag while item b) is a 

plastic bottle floating at the sea surface. Partly submerged body c) in Figure 24 is a 

plastic bucket, image d) depicts a food wrapping in seawater, while label e) pictures a 

ghost fishing net about to be recovered onboard a boat. Image f), in Figure 24, 

displays plastic straws, while picture g) shows a flying fish. Lastly, item h), in Figure 

24, is a motorboat, an example of an object drawn from the “other” class. 

Collectively, each of the eight object classes contained 200 images. After DA 

manipulations, the augmented dataset comprised 4,000 images in each object category 

with the total number of images amounting to 32,000. A share of 80% of the images 
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was assigned to the training set whereas the remaining 20% of the images to the test 

set. Consequently, each training category contained 3,200 images, while discrete 

testing classes featured 800 images. 

 

Figure 24: Examples of images retrieved from the marine debris and sea life dataset. 

Courtesy: ImageNet (Deng et al., 2009) and the non-profit organisation Algalita 

(Algalita, 2014b). 

Two scenarios were examined here in order to evaluate the performance and 

trustworthiness of the more sophisticated BM image classifier. The first scenario 

assessed the performance of the classifier by varying the number of epochs while the 

second scenario quantified its identification performance by altering the number of 

images allocated to each mini-batch. A mini-batch is a small group of training images 

for which the BM calculates an error, using equation (6), and updates its weights. By 

processing all mini-batches, an average error is computed for each epoch which 

shrinks as the number of epochs progresses.  



70 
 

 

Figure 25: Graph (a) displays the training and testing loss curves of the BM image 

classifier, while plot (b) shows the respective accuracy curves for 50 epochs. 

 

Figure 26: Plot (a) presents the training and testing loss of the BM image classifier 

while graph (b) shows the accuracy curves, respectively, for 6 epochs. 

Regarding the first scenario, two cases were investigated during which the BM 

was permitted first to execute 6 epochs and then allowed to progress to 50 epochs. For 

this study, 10 images were allocated to each mini-batch. Findings pertaining to the 

training and testing performance of the 50 and the 6 epochs cases are displayed in 

Figure 25 and Figure 26, respectively. The fluctuations in the testing loss for 50 

epochs (Figure 25 (a)) offered the inspiration to study the case of 6 epochs so as to 

investigate whether the BM image classifier past epoch 6 (cross-over between training 

and testing loss of Figure 25) embraces some unwanted image features during the 

training stage. 

The 50 epochs case, as illustrated in Figure 25 (a) and (b), scored a training 

accuracy of 98% at a training loss of 0.09. The testing accuracy of the 50 epochs 

peaked at 95% at a testing loss of 0.20. Meanwhile, the 6 epochs case (Figure 26 (a) 



71 
 

and (b)) produced a training accuracy of 93% with a loss of 0.21. Likewise, the testing 

accuracy attained a value of 94% at a loss of 0.22. Comparing these two cases, the 

BM image classifier, which was permitted to run for 50 epochs, yielded a higher 

training and testing accuracy and a smaller error in relation to the 6 epochs case. 

Clearly, the BM image classifier improves progressively itself on every epoch, and if 

the number of epochs is adequate enough the overall accuracy would progress up to a 

certain level. 

 

Figure 27: The testing loss (left) and testing accuracy (right) of the BM image 

classifier for three different batch sizes: 5, 10, and 16. 

Referring to the second scenario examined here, the identification performance of 

the more sophisticated BM image classifier was assessed by altering the number of 

images allocated to each mini-batch (batch size), which featured 5, 10, and 16 images. 

For all cases, the number of epochs was set to 50. The performance of the BM image 

classifier, using different batch sizes, is depicted in Figure 27. Since the training 

accuracy and loss for all batch sizes were comparable, only the respective testing 

accuracy and loss are presented in this figure. Therefore, the left plot of Figure 27 

shows the testing loss for each batch size while the right graph depicts the 

corresponding testing accuracy. 

As demonstrated in Figure 27 (a), batch size 5 exhibits the highest loss of 0.22 

compared with the other two batch sizes of 10 and 16, which yielded a testing loss of 

0.20 and 0.18, respectively. Inspecting Figure 27 (b), which displays the testing 

accuracy, it is evident that for all batch sizes the testing accuracy reached a peak of 

almost 96%. Summarising, up to this point, the combination of 50 epochs and a batch 
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size of 16 generated the highest testing accuracy while it produced the lowest testing 

loss. At the same time though, the validation accuracy is the most important 

parameter which governs the method’s performance and mirrors how well the 

learning process fared during the training and testing processes. 

 

Figure 28: Some examples of the successful recognition of images by the more 

sophisticated BM image classifier.  

The performance of the more sophisticated BM image classifier was evaluated on 

the validation set, which contained images that the classifier never encountered or 

trained at before. As it can be observed in Figure 28, the BM image classifier was able 

to discern the different categories of images illustrating marine debris and marine life 

and tag each image with its respective class label. Interestingly, the classifier 

successfully assigned the correct label to an image even though some of the images 

contained other distractions, such as the chain shown in the “Net” snapshot (Figure 

28). 

Figure 29 illustrates the validation accuracy of the BM for varying batch sizes, 

spanning from 5 to 10 and 16 images. Here, the validation set contained 400 newly 

provided image samples from the eight object categories. Observing Figure 29, it is 

apparent that increasing the number of images allocated in each batch size, the 

method yields a slightly lower validation accuracy. Of these, batch size 5 produced 
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the highest validation accuracy of 90% or 360 correct classifications out of 400 

validation samples. Batch size 10 and 16 generated a slightly lower validation 

accuracy of 88.7% and 88.2%, respectively. As the trustworthiness of the classifier is 

better served by the validation accuracy, the combination of batch size 5 and 50 

epochs was finally selected for the more sophisticated BM image classifier. 

Concluding, the particular classifier attained a training accuracy of 98% with a 

training loss of 0.13, a testing accuracy of 96% and a testing loss of 0.22 accompanied 

by a validation accuracy of 90%. 

 

Figure 29: Validation accuracy for varying batch sizes, spanning from 5 to 10 and 16 

images. 

The validation accuracy of ≈90% realised by the more sophisticated BM image 

classifier is comparable to the findings from other research studies which utilised the 

same DL model for recognising debris items in the marine environment. For example, 

Fallati et al. (2019) utilised the VGG16 model to construct an image classifier 

responsible for categorising UAV images into five general litter classes, which 

realised an accuracy of 94%. Additionally, Musić et al. (2020) employed the 

particular model to classify images illustrating general litter from five distinct 

categories, like cardboard, glass, paper, metal, and plastic. Their proposed image 

classifier attained an overall classification accuracy of 85% (Musić et al., 2020). 

Comparing now the classification performance of ≈90% of the proposed BM 

image classifier with applications of the same VGG16 model in other domains, the 
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BM attained similar validation accuracy. For instance, the study of Xu et al. (2018) 

utilised the VGG16 model for categorising images illustrating metals with an 

accuracy of ≈80%. Additionally, Liu et al. (2020b) used the specific scheme to create 

an image classifier capable of recognising kiwi fruits with a validation accuracy of 

88.4%. Consequently, the similarity between the classification results obtained by the 

proposed BM image classifier and other applications of the same DL tool renders the 

BM trustworthy.   

 

Figure 30: Correct image predictions as a function of image resolution. 

Another idea that aimed to assess the identification capabilities of the more 

sophisticated BM image classifier on plastic litter and sea life dealt with the resolution 

of the validation images. Image resolution is an important parameter since a high-

resolution image is characterised by richer information with presumably good quality 

making it easier for the BM image classifier to successfully recognise the plastic 

debris images. To inspect how sensitive and effective the particular image classifier is 

to resolution, it was decided to vary the resolution of the images in a systematic 

manner. In this regard, the resolution (pixels per inch) of the validation images was 

gradually reduced by 50%, 75%, 87.5%, and 93.7% of their original size. 

Subsequently, the truncated size images were processed by the BM image classifier 

probing in this way the evolution of its competence in discerning the presence of 

plastics or marine life from the same images. 

Results presented in Figure 30 reveal the total correct classifications of validation 
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images as a function of image resolution. Strikingly, the BM image classifier retained 

the same high performance in distinguishing between the different object categories 

despite a drastic reduction in the resolution of the validation images. In other words, 

the BM image classifier is capable of identifying marine debris and marine life even 

from very poor resolution images. It is only when the resolution of images was scaled 

down more than 3/4 (75%) of their original size that the ability of the classifier to 

correctly recognise images of marine debris deteriorated dramatically. Because these 

findings were obtained from images which exhibit much higher average resolution 

(125 pixels per inch) compared with the reduced size images which suffered a 75% 

reduction in quality (≈31 pixels per inch), the results of the more sophisticated BM 

image classifier presented herein appear credible. 

Even though the more sophisticated BM image classifier is competent in 

identifying images from eight categories with high validation accuracy of 90%, the 

scheme has some drawbacks. Firstly, the particular classifier can categorise still 

images and tag only one class label per image even though multiple plastic litter items 

were visible in the image. Consequently, the non-detected litter items within the 

images were omitted. Potentially the preceding development, led to an overestimation 

of the classification accuracy or undercounting of the detected litter items. Therefore, 

it was impossible to know the total number of plastic debris encountered in these 

images. 

Secondly, and most importantly, the BM cannot classify objects illustrated in 

videos. Identifying objects in video footage is a critical attribute of a marine debris 

classifier as it can process valuable details from larger littered areas. Hence, an image 

classifier tagging a single class label on still images is not sufficient for real world 

applications like the marine debris classification task. For this purpose, more 

advanced DL tools, like the YOLO series and the YOLACT++ algorithm, were 

employed here. 
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4.3. Detection and localisation of plastic litter in images and videos 

The research findings from the application of the YOLOv3, YOLOv4, YOLOv5 

and YOLACT++ algorithms to the marine debris classification task are presented in 

this part. The abovementioned DL tools can detect and localise multiple plastic litter 

and marine life appearing in images and video footage. Simply put, such object 

detectors can attach a class label on each plastic debris item found in an image or 

video footage while localising it by applying a rectangular bounding box around it. 

 

Figure 31: Sample of images featuring plastic marine debris. 

To facilitate this detection task, another dataset of seven object categories was 

constructed which predominantly aimed to improve the detection accuracy of the 

proposed plastic debris detectors. Some of the images of this dataset were obtained 

from the ImageNet (Deng et al., 2009) open source database, while others were 

provided by the Algalita non-profit organisation (Algalita, 2014b). Images illustrate 

plastic debris from six categories and one type of marine life, that comprise, (1) 

bottles, (2) bags, (3) buckets, (4) fishing nets, (5) straws, (6) food wrappings, and (7) 

a fish species. In total, 1,620 images made-up this dataset and examples of these 

images are shown in Figure 31. DA manipulations were applied to the images of the 

new dataset which relate to changes in the image pixel intensity. More precisely, 
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during the training stage of the YOLO series and YOLACT++ tools, the saturation, 

the brightness and the colour of the images was randomly altered. 

 

Figure 32: Training loss (blue curve) and testing mAP (red line) of the YOLOv3 

image classifier. 

The training and testing processes of the YOLOv3 and YOLOv4 object detectors 

were performed on an Intel® Xeon® (CPU 2.40 GHz) processor with an NVIDIA 

Quadro® K4200 graphics card. In contrast with the rest YOLO series, the YOLOv5 

was trained on the NVIDIA® Tesla® K80 GPU provided by the Google Colab 

platform. For the cases of YOLOv3 and YOLOv4, the batch size was set to 64 images 

with subdivisions of 16 images while the training and testing processes were left to 

run for 14,000 iterations. The training process of YOLOv5 spanned across 300 epochs 

with a batch size of 10. In all of the cases, the value of momentum was set to 0.9 

while the decay was 5×10‒4. Here, the momentum is a coefficient that is applied to an 

extra term in the weights update so as to speed-up the learning process and to help the 

network find a more important global minimum. Whatsmore, the decay refers to a 
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regularisation technique that attaches a small penalty to the loss function so as to keep 

the weights small and prevent overfitting.  

While training the YOLOv3 model on the custom dataset, the default values of the 

model’s hyperparameters have been utilised. That is, the IoU loss gain was set to 1.2, 

the value of the x and y coordinates loss gain was assigned to 4.062, while the width 

and height loss gain was set to 0.1845. Furthermore, the classification loss gain was 

fixed to 15.7, while an initial value of 3.67 of the classification binary cross-entropy 

(BCE) loss was adopted. Additionally, the object loss gain was adjusted to 20, the 

object BCE loss was set to 1.36, the IoU training threshold assumed a value of 0.194, 

while the initial learning rate was fixed to 0.00128. Moreover, a final lambda learning 

rate value of ‒4 was used, the stochastic gradient descent (SGD) momentum was 0.95, 

and the optimiser weight decay was 2.01×10‒4. The image saturation value was set to 

0.8, while the image Hue Saturation Value (HSV) was set to 0.388. Lastly, the value 

of image rotation was 1.2°, the value for the image translation was kept to 0.119, the 

image scale was 0.0589, and the shear range of image was set to 0.401. 

Similarly, during the training phase of the YOLOv4 model, the default values of 

the model’s hyperparameters were used. Namely, the initial learning rate was set to 

0.01, the final one-cycle learning rate to 0.1, the warmup epochs spanned to 3, the 

warmup momentum was adjusted to 0.8, the warmup bias learning rate was fixed to 

0.1, while the box loss gain remained at 0.05. Additionally, a classification loss gain 

of 0.3 was used, the classification and object BCE loss were kept to 1, the object loss 

gain was 0.6, the IoU training threshold was 0.2, and the anchor-multiple threshold 

was set to 4. Moreover, the focal loss gamma remained at 0, while the image HSV-

hue augmentation was set to 0.015. Also, the image HSV-saturation augmentation 

value was set to 0.7, the image HSV-value augmentation to 0.4, the image rotation 

was maintained at 0°, the image translation value was set to 0.1, the change in image 

scale was 0.9, while the values of shear change, image perspective, flip up-down, and 

mix-up were set to zero. Lastly, the value of image flip left-right was set to 0.5 while 

the image mosaic value was 1. 
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Figure 33: Training loss (blue curve) and testing mAP (red line) of the YOLOv4 

image classifier. 

During the training phase of the YOLOv5 algorithm, the default values of the 

model’s hyperparameters have also been maintained. Specifically, the initial learning 

rate was assigned a value of 0.01, the final one-cycle learning rate was set to 0.2, the 

warmup epochs to 3, the warmup momentum to 0.8, the warmup bias learning rate 

was set to 0.1, while the box loss gain assumed a magnitude of 0.05. Additionally, the 

classification loss gain was set to 0.5, the classification and object BCE loss to 1, the 

object loss gain was again 1, the IoU training threshold to 0.2, and the anchor-

multiple threshold was adjusted to 4. Moreover, the focal loss gamma was set to 0, 

while the image HSV-hue augmentation  was assigned a value of 0.015. Other 

hyperparameters referred to the image HSV-saturation augmentation which was set to 

0.7, the image HSV-value augmentation which assumed a value of 0.4, the image 

rotation which was fixed to 0°, the image translation was set to 0.1, the change in 

image scale was kept at 0.5, while the values of shear change, image perspective, flip 
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up-down, and mix-up were set to zero. Concluding, the value of image flip left-right 

was set to 0.5 and the image mosaic value was maintained at 1. 

 

Figure 34: The training loss (left) and the testing mAP (right) attained during the 

training and testing processes of the YOLOv5 object detector. 

Figure 32 and Figure 33 depict the plots of the training loss (blue line) and the 

testing mean average precision (mAP) (red curve) of the YOLOv3 and YOLOv4 

object detectors, respectively, when trained and tested on the marine debris dataset. 

The testing mAP of YOLOv3 topped to 99.24%, at a training loss of 0.18. 

Analytically, the training loss of the YOLOv3 model was calculated using the sum of 

squared error loss and the binary cross-entropy (BCE) loss (Redmon et al., 2018). 

Similarly, the YOLOv4 object detector realised a testing mAP of 98.62%, at a training 

loss of 2.12. However, the training loss of the YOLOv4 tool was calculated using the 

complete intersection over union (CIoU) loss for bounding box coordinate predictions 

and the BCE loss for class predictions (Bochkovskiy et al., 2020). 

Figure 34 illustrates the training and testing results of the YOLOv5 object detector 

when applied to the marine debris and marine life image dataset. Graph (a) of Figure 

34 portrays the training loss of the YOLOv5 object detector, which precipitated to 

0.001, while graph (b) refers to its testing mAP which amounted to 99.5%. The total 

training loss was calculated using the generalised IoU (GIoU) loss for bounding box 

predictions and BCE with logits loss for class predictions (Rezatofighi et al., 2019). 

Hereafter, a series of steps were adopted to calculate the mAP. Initially, the 

predicted bounding box applied by the object detection tools on each discovered 
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object was compared to its respective ground truth bounding box assigned manually 

during the annotation process. For all YOLO models, the YOLO_mark annotation 

tool was utilised, while for the YOLACT++ algorithm, the Visual Geometry Group 

(VGG) Image Annotator (VIA) (Dutta et al., 2019), was employed. The comparison 

was facilitated by using the IoU expressed by equation (13). Predictions with IoU 

values smaller than 0.5 were discarded as they imply a low level of confidence. 

Thereafter, the average precision of each object class can be retrieved using the area 

under the precision-recall curve for that class. Collectively, the mean value of all 

average precisions from all object classes yielded the mAP (Padilla et al., 2020). 

Expressed as ratios, the precision and recall for each object class were calculated 

from: 

TP
Precision

TP+FP
=                                                (16) 

TP
Recall

TP+FN
=                                                 (17)                                             

where TP refers to True Positives, that is, the total number of objects correctly 

labelled by the model as belonging to the target class (Padilla et al., 2020). The False 

Positives (FP) denote the total number of items incorrectly labelled by the model as 

belonging to the target class. Lastly, the False Negatives (FN) express the total 

number of articles that the classifier incorrectly labelled as assigned into the false 

class and yet being part of the target class. Specifically, the precision (equation (16)) 

quantifies the proportion of the predicted positives that were truly positive while the 

recall (equation (17)) is a measure of the proportion of actual positives which were 

classified correctly. 

Part of the effort to evaluate the identification capabilities of all DL-based marine 

debris detectors included the use of a total of 350 newly provided validation images of 

plastic debris and marine life from the seven object classes. Note that the seven object 

categories included plastic bottles, plastic bags, plastic buckets, fishing nets, plastic 

straws, food wrappings, and a fish species. This evaluation produced a validation 
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mAP of 59.42% for YOLOv3, 60.49% for YOLOv4 and 92.4% for the YOLOv5 tool. 

Interestingly, the YOLOv5 realised an increase in the validation mAP of ≈33% from 

still images compared to the rest YOLO series. 

 

Figure 35: Examples of correctly recognised plastic debris items obtained from the 

YOLOv3 object detector. 

Figure 35, Figure 36 and Figure 37 illustrate some correctly recognised plastic 

debris items and marine life obtained from the YOLOv3, the YOLOv4 and the 

YOLOv5 object detectors, respectively. Carefully observing these figures, it is 

evident that all of the YOLO series attached a class label and a bounding box on each 

detected litter item or sea life. Remarkably, the YOLOv5 marine debris detector, in 

contrast with the rest YOLOs, attached the confidence score to each discovered item, 

as illustrated in Figure 37. Clearly, the confidence score next to each class label is an 

important indication as one can directly judge the quality and trustworthiness of each 

prediction simply by looking at this score. 
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Figure 36: Examples of correctly recognised plastic litter articles obtained from the 

YOLOv4 object detector. 

When applied to still images, the YOLOv3 and YOLOv4 models produced a 

validation mAP of 59.42% and 60.49%, respectively, which compares well with the 

reported validation mAPs attained from other research studies which considered the 

same classification task. Namely, Watanabe et al. (2019) utilised the YOLOv3 tool to 

detect floating debris from four object categories which comprised plastic bottles, 

plastic bags, drifting wood and “other” items, with a mAP of 77.2%. Additionally, 

Tomas et al. (2022) used the YOLOv4 algorithm to identify floating plastic and paper 

debris in rivers, attaining a mAP of 63%. Comparing the performance of the YOLOv3 

and the YOLOv4 tools with applications from other domains, like the detection of 

apples (Kuznetsova et al., 2020), traffic signs (Dewi et al., 2021) or fig fruits (Yijing 

et al., 2021), both methods realised almost a 30% lower mAP. However, the current 

research presented herein expanded the scope of the marine debris detection research 

by discerning litter items from more than one category. 
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Figure 37: Correctly classified and localised plastic debris items and fish using the 

YOLOv5 object detector.  

Referring to the validation mAP of 92.4% that the YOLOv5 object detector 

attained over the newly provided still images, this value is slightly higher than the 

mAP obtained from existing applications of the same tool on the same classification 

task. For instance, Córdova et al. (2022) and Veerasingam et al. (2022) utilised the 

YOLOv5 algorithm for detecting litter items from up to six general classes belonging 

to various natural settings with a mAP of 85% and 90%, respectively. Comparing now 

the performance of the particular scheme with existing applications from other 

domains, like the detection of safety helmets (Zhou et al., 2021) or breast tumour 

(Mohiyuddin et al., 2022), the proposed YOLOv5 realised a very similar detection 

accuracy. The fact that the proposed YOLOv5 marine debris detector achieved 

analogous mAP with prevailing applications on comparable or different items, renders 

the method reliable. 

Moreover, referring to the detection of objects in the video content, the YOLOv3 

and the YOLOv4 object detectors achieved comparable validation mAPs of 42.2% 

and 42.47%, at a detection rate of almost 8 frames per second (FPS). The YOLOv5 

object detector realised a validation mAP of 74.5% at a detection rate of 34 FPS. 

Suffice to mention that the video footage tested here was recorded at a beach in 
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Paralimni, Cyprus, and illustrates objects from the previous seven categories. 

Remarkably, the YOLOv5 marine debris detector achieved an increase of almost 32% 

in the mAP from the video content compared to the earlier YOLOv3 and YOLOv4 

models. Lastly, the validation mAP of 74.5% that the YOLOv5 realised on the video 

footage is higher by ≈7% than reported figures from other research studies, which 

utilised the same DL tool to process underwater video footage (Chin et al., 2022).  

 

Figure 38: Comparison of the performance of the YOLOv5 and the YOLACT++ 

object detectors. 

Moreover, the detection rate of 34 FPS that the YOLOv5 object detector attained 

over the video footage signifies that this scheme, in contrast with the YOLOv3 and 

the YOLOv4 detectors, performs real-time object detections on videos. Taken 

together, when considering both real-time identifications on videos and the superb 

classification performance of 92.4% on validation images, the YOLOv5 algorithm 

proved, up to this point, the most powerful and accurate DL algorithm for 

constructing the detector to be used in recognising and localising plastic debris and 

sea life in the marine environment. 

Observing the sample of images presented in Figure 37, it is reasonable to wonder 

if the applied bounding box on each identified object may embrace some unwanted 

features from the background and, consequently, lower the detection accuracy of the 

YOLOv5 tool. For that reason, the attention has shifted to the YOLACT++ algorithm, 

which considers, beyond the class label and the bounding box, the area of each 

detected object. As illustrated in Figure 38, the YOLACT++ tool attached a mask on 
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each identified item that traces its external geometry. Spurred by the need of 

enhancing the capabilities of the proposed marine debris detector while improving its 

identification performance on both still images and video recordings, the YOLACT++ 

scheme was applied to the marine debris classification task (Kylili et al., 2021). 

 

Figure 39: The total training loss (left) and testing mAP (right) of the YOLACT++ 

object detector for bounding box (bbox) predictions (red line) and mask predictions 

(magenta curve).  

Similar to YOLOv5, the training and testing processes of the YOLACT++ object 

detector were executed on the NVIDIA® Tesla® K80 graphical processing unit (GPU) 

provided by the Google Colab platform. The default values of the hyperparameters 

that have been used during the training process of the YOLACT++ algorithm are the 

following: the initial learning rate was set to 0.001, the momentum to 0.9, the decay to 

5×10‒4, the gamma value to 0.1, the learning rate warmup assigned a value of 1×10‒4, 

while the mask alpha was set to 6.125. Moreover, the positive IoU threshold was set 

to 0.5, the negative IoU threshold was 0.4, while the crowd IoU threshold was 0.7. 

Additionally, the initial focal loss was set to 0.01, the focal loss alpha value to 0.25, 

the focal loss gamma value to 2, while the value of the photometric distortion of the 

image and its cropping parameter were randomly altered. Finally, the value of image 

mirroring was fixed to 0.5, whereas the parameters that relate to flipping and rotation 

of the image were set to zero. 
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Figure 40: Illustrations of correctly predicted plastic detritus and fish using the 

YOLACT++ object detector. 

The training and testing process of the YOLACT++ tool were performed during 

800,000 iterations and data augmentation manipulations, based on the single shot 

multibox detector (Liu et al., 2016), were applied to the images during the training 

stage. The single shot multibox detector adjustments scale down the image, 

haphazardly crop a part of the snapshot and place it in a random place in the image 

while mirroring, flipping and rotating the picture.  

Results from the training and testing assessments of the YOLACT++ object 

detector are presented in Figure 39. Graph (a) (Figure 39) shows the total training loss 

of the YOLACT++ image classifier which converged at the value of 0.2. For the 

record, the total training loss was computed by a combination of three loss 

components: (1) the classification loss, Lcls, (2) the bounding box regression loss, Lbox, 

and (3) the mask loss, Lmask (Bolya et al., 2019; Bolya et al., 2020), as follows: 

cls box maskLoss L L L= + +                                            (18)  

where Lcls and Lbox are defined in the same way as in Li et al. (2016). Loss Lmask refers 

to the pixel-wise binary cross entropy (BCE) between the assembled masks M and the 
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ground truth masks Mg. Finally, plot (b) of Figure 39 demonstrates the testing mAP 

for image predictions using bounding boxes (red line), which peaked at 94.45%. 

Whatsmore, the testing mAP for object detections using masks (magenta line) 

amounted to 90.81%.  

Evaluating the YOLACT++ object detector on 350 new validation images 

illustrating plastic debris and marine life from the seven object categories, the method 

attained a validation mAP of 69.6% for bounding box predictions and 66.9% for mask 

predictions. Cases of correctly predicted plastic detritus are demonstrated in Figure 

40, where the class label accompanied by its confidence score and the mask are 

attached to each detected plastic trash item or marine organism. Indeed, as depicted in 

Figure 40, the mask applied by the YOLACT++ object detector on each discerned 

item encloses only its actual area. Lastly, applying the proposed YOLACT++ object 

detector on the actual video footage recorded at a beach in Paralimni, Cyprus, the 

particular scheme realised a validation mAP of 75.6% and 75.7% for bounding box 

and mask predictions, respectively, at a frame rate of 14 FPS. 

Comparing the performance of the proposed YOLACT++ detector on still images 

with existing applications of the same tool on the marine debris detection task, the 

particular scheme realised a slightly lower validation mask mAP of about 5% when 

compared with an underwater trash detector (Dias et al., 2022). In contrast with 

applications of the same DL model on other research areas, like the segmentation of 

skin psoriasis (Lin et al., 2021), the proposed YOLACT++ detector achieved a 20% 

lower validation mask mAP. However, the lower value of the validation mask mAP of 

the proposed object detector was expected since the particular detector can discern 

litter items from more than one category. Concluding, Table 6 summarises the 

comparison between the performance of the DL tools employed in this study and 

other research efforts that utilised the pertinent DL tools on the same or another 

detection task. 

Concluding, comparative results of the performance of all DL-based marine debris 

detectors examined in this study, excluding the BM which does not perform multi-

object detection in images and videos, appear on Table 7 and Table 8. Table 7 lists the 
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validation mAP obtained from the YOLOv3, the YOLOv4, the YOLOv5 and the 

YOLACT++ object detectors when validated on 350 still images depicting plastic 

litter and a fish. Table 8 presents their respective validation mAPs when applied to the 

same video recording. Results presented in both tables, indicate that YOLOv5 

outperforms the other object detectors on discovering items from still images scoring 

a validation mAP of 92.4%, while the YOLACT++ tool is the best for detecting 

articles in video content. Although, an improved detection accuracy from a video 

renders the marine debris detector more reliable and useful simply because the video 

footage can scan large polluted areas and trace more items of plastic debris. Based on 

the previous justifications and the fact that the YOLACT++ tool applies a mask on 

each detected item, which can generate more valuable information about its physical 

dimensions, rendered the YOLACT++ the DL algorithm of choice. 

Table 6: Summary of the comparison of the performance of the YOLO series and 

YOLACT++ tool with other studies referring to the same or a different domain. 

DL tool 

Accuracy of studies applied 

to the same domain 

(# classes) 

Accuracy of studies 

applied to different domain 

(1 class) 

Accuracy of 

this study 

(#  classes) 

BM 

(VGG16) 

94% (5) (Fallati et al., 2019),  

85% (5) (Musić et al., 2020) 

80% (Xu et al., 2018), 

88.4% (Liu et al., 2020b)  

86% (3) 

90% (8) 

YOLOv3 

77.2% (4) (Watanabe et al., 

2019), 

88.3% (8) (Xue et al., 2021) 

94% (Liu et al., 2020a), 

90.8% (Kuznetsova et al., 

2020) 

59.4% (7) 

YOLOv4 
63% (2) (Tomas et al., 2022), 

91% (3) (Tian et al., 2022) 

89.3% (Dewi et al., 2021), 

92.3% (Yijing et al., 2021) 
60.5% (7) 

YOLOv5 

85% (5) (Córdova et al., 

2022), 

90% (7) (Veerasingam et al., 

2022) 

94.7% (Zhou et al., 2021), 

90.5% (Mohiyuddin et al., 

2022) 

92.4% (7) 

89.4% (9) 

YOLACT++ 72.2% (4) (Dias et al., 2022) 
43.8% (Wen et al., 2021), 

86% (Lin et al., 2021) 
69.6% (7) 
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Table 7: Validation mAP realised from YOLOv3, YOLOv4, YOLOv5 and the 

YOLACT++ object detectors as applied to 350 still images.  

Image classifier Bounding box mAP (%) Mask mAP (%) 

YOLOv3 59.4 ‒ 

YOLOv4 60.5 ‒ 

YOLOv5 92.4 ‒ 

YOLACT++ 69.6 66.9 

Table 8: Validation mAP obtained from YOLOv3, YOLOv4, YOLOv5 and  

YOLACT++ object detectors as they pertain to the video footage. 

Image classifier Bounding box mAP (%) Mask mAP (%) 

YOLOv3 42.2 ‒ 

YOLOv4 42.5 ‒ 

YOLOv5 74.5 ‒ 

YOLACT++ 75.6 75.7 

 

Thereafter, the YOLACT++ algorithm was utilised to construct an intelligent tool 

that can detect, localise and segment multiple marine debris and marine life in still 

images and video recordings. More precisely, the proposed intelligent method can 

differentiate items among seven categories of objects, namely plastic bottles, plastic 

bags, plastic buckets, fishing nets, plastic straws, food wrappings, and a fish species. 

However, the most important outcome of the proposed intelligent method is the 

masked area applied on each discovered object. Interestingly, this mask can provide 

valuable details as they can be processed using image processing tools to determine 

the litter’s physical dimensions. Results from the application of the intelligent method 

on real field data are presented in the following sub-section. 
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4.4. Physical dimensions and density of plastic litter  

4.4.1. Estimation of the plastic litter density across the Cypriot coastlines 

4.4.1.1. First beach survey 

The intelligent method constructed using the YOLACT++ algorithm was tested on 

real field images which depict plastic debris. Ultimately, the proposed intelligent tool 

was used to estimate the plastic litter density across the Cypriot coastlines. Thus, six 

beaches, from two popular tourist destinations at the cities of Larnaca and Famagusta, 

Cyprus, were initially selected as monitoring sites for collecting images of plastic 

litter. All of the six beaches displayed certain characteristics. These comprised a 

minimum stretch of 30 m, were accessible to humans, and had clear access to the sea, 

meaning that the beach did not have breakwaters which can influence sea currents and 

waves and thus the abundance of marine debris. Each monitoring site was assigned a 

site code while coordinates were recorded on the global positioning system (GPS). 

Suffice to mention that this assessment only considered macroplastics larger than 5 

cm (Kylili et al., 2021). 

Initially, the six beaches were scanned for the presence of marine debris during 

November 7th, 2020, which produced six data samples— one from each monitoring 

location. Data collection was conducted by one researcher while the same 

methodology was followed for all the testbed sites. Unusually polluted shorelines like 

urban beaches were omitted as daily clean-ups are performed there, while semi-urban 

and remote beaches were granted priority. At the first two beaches, in Larnaca, the 

survey covered a 150 m by 3 m transect. Due to the narrow topography of the third 

beach, in Larnaca, a coastline stretch spanning 100 m by 1 m was covered. In 

Famagusta, the first transect scrutinised an area measuring 120 m by 3 m, while the 

rest two scans stretched over two coasts which extended 30 m by 2 m. Hence, almost 

600 m of Cypriot coastlines were surveyed during this investigation. However, due to 

limitations in resources, such as scientific equipment and a pressing time-frame, only 

a limited number of coastlines were examined during this phase. 
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Inspecting images captured from the six beaches, the intelligent method detected a 

total of 52 plastic objects belonging to four categories of plastic debris, namely, 

plastic bottles, bags, straws, and food wrappings. By analogy, the abovementioned 

technique predicted a plastic litter density of 0.035 items/m2 which amounts to a total 

mass of 0.9 kg for the 52 plastic items. Plastic litter density here was obtained by 

averaging the number of correctly identified plastic detritus items over the scanned 

area. Similarly, the total mass of the litter was estimated by tallying the known mass 

of all predicted plastic items while considering the mass of individual objects. 

Interestingly, the predicted litter density for Cyprus of 0.035 items/m2 compares 

well with reported figures from neighbouring countries. For instance, the beach litter 

density in Greece’s Ionian Sea was estimated to be at least 0.03 items/m2 

(Vlachogianni et al., 2017), while neighbouring Turkish coasts were reported to 

contain no less than 0.085 items/m2 (Topçu et al., 2012). Considering that the 

estimated litter density for Cyprus is comparable with the findings from adjacent 

countries lends trustworthiness to the proposed intelligent method. 

Utilising the preceding findings, it was possible to extrapolate the total count of 

marine debris items that litter the Cypriot coastlines which span about 735 km 

(European Commission, 2019). A methodology similar to Lavers et al. (2017) and 

Galgani et al. (2000) was adopted here, which performed linear extrapolation to 

estimate the abundance of plastic litter at large marine regions based on small-scale 

sampling sites. Results revealed that, in Cyprus, the aggregate number of plastic items 

which clutter the island’s coastlines were approximately 66,000 articles weighing a 

total of about 1,000 kg. 

At this point, it is helpful to mention that the images acquired from the six beaches 

illustrated plastic litter only from four categories of items, which comprised, plastic 

bags, plastic bottles, plastic straws and food wrappings. However, during this survey, 

it was not possible to spot and document using our camera any objects from the rest 

three categories, which are the plastic buckets, the fishing nets and the marine life. 

That was the reason that these categories were omitted from the calculation of the 

plastic litter density. 
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4.4.1.2. Second beach survey 

Broadening the investigation while validating the abovementioned plastic litter 

density of 0.035 items/m2, more actual field video recordings illustrating plastic 

debris from all seven object categories were acquired from different and larger beach-

front stretches in Cyprus during September 19th, 2022. Again, due to restrictions in 

resources, equipment, and a confined time-frame, an additional six beaches from the 

cities of Famagusta, Larnaca, and Limassol, were examined as part of the new survey  

expedition. Like the earlier efforts, the new sites were chosen with the same selection 

criteria and methodology elaborated in the first investigation (refer to §4.4.1.1). 

During the new investigation, video recordings from two distinct beaches in 

Famagusta covered a seafront measuring a total of 360 m long by 2 m wide. In 

Larnaca, video footage from two different beaches scanned a seafront of a total of 500 

m (long) by 2 m (wide), while in Limassol, video recordings from two distinct 

beaches scanned a total of 540 m length by 2 m wide coast transect. In aggregate, 

about 1,400 m of Cypriot coastlines were surveyed during the new survey. 

Scrutinising the collected video footage acquired during the latest beach 

investigation, it was possible to extract individual video frames which encompassed 

plastic debris from all seven object categories, namely, plastic bags, bottles, buckets, 

straws, fishing nets, food wrappings and a fish species. The intelligent method, 

constructed using the YOLACT++ tool, identified a total of 146 plastic litter items 

belonging to the previous seven object categories. Averaging the number of correctly 

detected plastic debris items over the scanned area, which amounts to 2,800 m2, the 

intelligent technique estimated a new plastic litter density of 0.052 items/m2. 

Even though the new plastic litter density of 0.052 items/m2 of the second beach 

survey is slightly larger than the previous plastic litter density of 0.035 items/m2 (refer 

to §4.4.1.1), yet results could be compared with some caution. Plainly, the difference 

of 0.017 items/m2 between the two litter densities was expected as the latest survey 

covered longer beach stretches and considered all of the object categories in the 

estimation of the plastic litter density. Given that the two survey efforts were 

conducted at different locations and dates, some deviation of the density results was 
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expected in light of other parameters such as the beach morphology, wind speed and 

direction as well as the popularity of the beach.   

Interestingly, the new plastic litter density of 0.052 items/m2 compares well with 

reported figures from other countries, like Spain and Morocco (Asensio-Montesinos 

et al., 2019; Nachite et al., 2019). Specifically, the beach litter density in Spain was 

estimated to be at least 0.062 items/m2 (Asensio-Montesinos et al., 2019), while in 

Morocco the concentration of litter was projected to be at least 0.054 items/m2 

(Nachite et al., 2019). Another beach litter collection effort led by Orthodoxou et al. 

(2022), which focused on Cyprus, retrieved litter from 11 classes and manually 

calculated the litter density to 0.15 items/m2. Referring on the results of Orthodoxou 

et al. (2022) and considering litter items from only the same seven object categories 

that were studied in this thesis, their calculated plastic litter density approximates to 

0.055 items/m2. Clearly, this figure almost matches the predicted plastic litter density 

of 0.052 items/m2 estimated during the new beach assessment elaborated here. 

Considering that the plastic litter density obtained from the manual beach collections 

of Orthodoxou et al. (2022) and the proposed DL-based object detector for the island 

of Cyprus have produced almost identical findings, lends trustworthiness and 

credibility to the suggested method. In other words, the results from Orthodoxou et al. 

(2022) serves as a partial validation to the findings outlined in this study.  

4.4.2. Physical dimensions of plastic litter 

Expanding the investigation, the proposed intelligent method, which is based on 

the YOLACT++ tool, deduced the physical dimensions of all detected plastic debris 

items found at the six beaches in Cyprus surveyed during the first beach investigation 

(refer to §4.4.1.1). At the heart of this step, was the application of the OpenCV 

Contours image processing tool described in sub-section A3 of the Appendix. The 

pertinent image processing tool estimated the length of each mask applied to 

individually segmented plastic litter. Initially, each mask was converted into a contour 

area. Subsequently, the tool connected together all continuous points, which exhibited 
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the same pixel intensity along the object’s borderline, as part of a curve linking 

exercise. 

 

Figure 41: The OpenCV Contours image processing tool was used to compute the 

length (L), in pixels (p), of each detected plastic item. 

Next, a scaling factor of 40 pixels to 1 cm was applied to compute the actual size 

of the 52 marine debris items. Serving as a point of reference, the length of each 

image window frame measured 150 cm long. Similarly, the length of each segmented 

debris piece, in pixels, was multiplied with the span of the wider image window 

frame, in cm. After normalising the estimated length of each item with the length of 

the image window frame, in pixels, the real length of the masked litter object was 

obtained in units of cm. Part of the previously mentioned process is illustrated in 

Figure 41, where the YOLACT++ intelligent method predicts the length of the plastic 

bottle in pixels (Kylili et al., 2021). 

 

Figure 42: The predicted length spectrum for all detected plastic debris items found at 

the six beaches in Cyprus of the first coast investigation (refer to §4.4.1.1). 
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Figure 42 depicts the findings of the extrapolated length for all recognised plastic 

litter found at the first six beaches in Cyprus of the initial beach investigation (see 

§4.4.1.1) in categories ranging between 0‒10 cm until 40‒50 cm with an increment of 

10 cm. Results demonstrated that the dominant length of plastic debris varied between 

10 and 30 cm which compares well with the actual size of common plastic litter 

frequently spoiling these seashores. Serving as a validation, the preceding dimensions 

match the actual length of 0.5 L (500 mL) plastic bottles, medium-sized plastic bags, 

plastic straws and food wrappings mainly from chocolate bars and potato chips. 

4.4.3. Degradation of a biodegradable plastic bottle 

The degradation of a biodegradable plastic bottle was studied in this part, as a last 

investigation of the proposed intelligent method which is based on the YOLACT++ 

object detector. The method accepted as input an image of a biodegradable plastic 

bottle at three different stages of its decomposition. Again, the OpenCV Contours 

image processing tool was utilised to process the three images. Each masked object 

was converted into a contour area and the method calculated the item’s surface area in 

pixels. 

 

Figure 43: The degradation of a biodegradable plastic bottle. Image on top adapted 

from ECHO Instruments (2016). 



97 
 

As depicted in Figure 43, the segmented bottle on Day 1 possessed an area of 

21,640 pixels. Subject to degradation, during Day 28, the bottle exhibited an area of 

15,850 pixels and on Day 38 its area shrunk to 13,731 pixels. Comparing Day 1 and 

Day 38, in Figure 43, the decrease of 7,909 pixels in the area of the bottle translated 

into a reduction of almost 37% in the physical dimensions of the biodegradable bottle. 

Being able to project the extent of disintegration of biodegradable items is a very 

useful aspect of their use. Nevertheless, the calculation of the degradation using image 

processing techniques is possible only when the images feature good representations 

of the biodegradable items taken from the same prospect of camera view. Helping 

form more concrete conclusions pertaining to the degree of the degradation of 

plastics, the images illustrating the biodegradable items ought to possess the same 

size, orientation and be located at the same distance from the camera. Any deviations 

from the abovementioned conditions can affect the results with regards to the 

calculation of the actual litter’s physical dimensions. 

4.5. Estimating the abundance of plastic litter from video footage 

Another line of investigation of this research dealt with the estimation of the 

abundance of plastic litter in video recordings. For this scope, the YOLOv5 image 

classifier was utilised at it performed real-time object detection of 34 FPS on actual 

field video footage. At the heart of this task were two counting methods, namely, the 

ROI line and the centroid tracking techniques. By imposing a virtual line on a video, 

the ROI line technique tallies the number of objects that cross that line. On the other 

hand, the centroid tracking method considers the centre of the bounding box of a 

detected item as its centroid and assigns to it an identity (ID). In this manner, the 

method tracks the identified bodies of interest as they move from frame to frame 

(Teng et al., 2022). 

Table 9: The number of marine debris items and marine life contained in the 

examined video footage. 

Category Bottles Bags Buckets Nets Straws Wrappings Fish  Total 

Actual number 4 2 2 1 1 group 8 1 19 
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The same video recording used by the YOLO series and the YOLACT++ object 

detectors (refer to §4.3) was utilised here to assess the performance of the two 

counting methods. The actual number of marine litter articles and marine life present 

in the examined video footage is depicted in Table 9. Afterwards, a sequence of ROI 

line thicknesses was used to evaluate the performance of the ROI line counting 

method. Subsequently, the centroid tracking technique was utilised, whose 

maxDisappeared and the thresholdFrames parameters were adjusted to strengthen the 

method’s counting capabilities. 

4.5.1. Counting marine debris articles using the ROI approach 

Initially, the thickness of the ROI line was altered from 5 to 16 pixels with an 

increment of 1 pixel each consecutive step. Once the predicted bounding box of a 

detected object passed the ROI line, the corresponding count of that object’s 

respective category was augmented by one. Examining the findings of this 

assessment, as illustrated in Figure 44, it was found that a ROI line width of 13 pixels 

attained the best counting performance per object category compared to other line 

thicknesses. For this case, the counting technique discovered 4 plastic bottles, 1 

plastic bag, 1 plastic bucket, 1 fishing net, 10 food wrappings, 1 cluster of plastic 

straws and no fish. It is worth noting that the “Actual” bar has been added for 

illustration purposes and depicts the actual number of items in the validation video. 

In total, 18 items were successfully tallied by the ROI line method for a line width 

of 13 pixels, which equates into a counting accuracy of 95%. Although one may 

wonder why an ROI line width of 14 pixels was not selected as the preferred 

thickness of interest as supported by the unrealistically high counting accuracy of 

105%. Careful inspection reveals that the performance of the algorithm that does not 

overcount the litter items in the validation video is preferable as it avoids double 

counting. Similarly, undercounting or omitting the plastic litter or fish is not equally 

desirable. Therefore, striking a balance between the two parameters is functionally 

sound. Based on the previous reasoning, ROI line widths of 15 and 16 pixels were 
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also discarded for this detection and counting task. Apparently, the miscounting of 

some items was attributed to the centre of the bounding box of these detected objects 

which may appear to the left of the line in one frame and to the right of the line in the 

next frame. Likewise, the bodies whose bounding box did not cross the ROI line were 

not counted by the method. 

 

Figure 44: The performance of the ROI line counting method when varying the 

thickness of the ROI line from 5 to 16 pixels. 

The performance of a counting algorithm relies heavily on the identification 

capabilities of the DL-based object detector. Apparently, the findings presented here 

cannot directly compare with what the object detector identifies and what the counting 

method eventually tallies. For example, in some cases the object detector assigned a 

wrong label to some objects, which produced an incorrect increment in the number of 

counted items for that class. At the same time, the manner with which videos are 

recorded fundamentally affects the performance of the object detection and counting 

technique. Clearly, high-resolution videos that were filmed slowly while offering 

adequate exposure to each object to appear on screen for an ample amount of time, 

were preferable. Not only does this boost the likelihood to correctly classify a given 

object but it can also diminish the probability for an object to be differentially 

classified between frames. As a result, the label that is most often associated with the 

object is most likely to be correctly counted over others. 
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4.5.2. Tallying debris items using the centroid tracking tool 

Subsequently, the centroid tracking method was tapped for quantifying the 

number of marine debris and marine life which appeared in the video footage. 

Parameters maxDisappeared and thresholdFrames were altered accordingly in order 

to assess the counting ability of the centroid tracking technique. Figure 45 and Figure 

46, respectively, present the findings of this evaluation. Inspecting Figure 45, the 

value of maxDisappeared was varied between 10 to 80 frames with an increment of 

10 frames. As part of a parametric investigation, maxDisappeared realised its best 

counting precision per object category when it dealt with 60 frames during which it 

identified 6 plastic bottles, 1 plastic bag, 2 groups of plastic straws, 3 plastic buckets, 

2 fishing nets, 4 food wrappings and no fish, totalling 18 items, which translates to a 

counting accuracy of 95%. Presumably, because the centroid of the bounding box of a 

new detected item was tied to a previously tracked object, the centroid tracking 

method miscounted some objects. Nevertheless, the centroid tracking method 

achieved comparable counting precision when applied to the same video as the ROI 

line counting technique. 

 

Figure 45: The performance of the centroid tracking counting technique while altering 

the value of maxDisappeared from 10 to 80 frames. 

At a first glance a value of maxDisappeared of 40 and 50 number of frames fares 

better than other number of frames. Yet, the previous observation cannot be 

considered in isolation. Practically, parameter maxDisappeared requires a sufficient 
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number of frames to deregister an object captured in video footage. If deregistration 

occurs prematurely, that is, for a value of maxDisappeared smaller than 50 frames, 

the proposed counting method overestimates (double counts) the number of objects 

presented in the video recording. On the other hand, as displayed in Figure 45, when 

the value of maxDisappeared is larger than 60 frames, e.g., 70 and 80 frames, the 

centroid tracking technique deregisters objects belatedly and this causes the method to 

undercount the litter items. Consequently, the value of maxDisappeared of 60 frames 

yielded the best possible outcome when inspecting individual item classes and this 

was the major reason for selecting it. 

 

Figure 46: The performance of the centroid tracking counting technique when 

adjusting the number of thresholdFrames from 10 to 60 frames. 

Similar to the maxDisappeared, the magnitude of the customised thresholdFrames 

parameter was extended from 10 to 60 frames at a step of 10 frames. As demonstrated 

in Figure 46, which illustrates the results of this evaluation, a thresholdFrames value 

between 10 and 20 frames generated the best counting accuracy per litter class. 

Herein, a thresholdFrames value of 20 frames was chosen with the method counting 4 

plastic bottles, 1 plastic bag, 2 plastic buckets, 2 fishing nets, 2 food wrappings, no 

group of plastic straws and no fish. These results translate into an overall counting 

accuracy of 58%. Clearly, the low score the method achieved here is not necessarily 

representative of the actual counting performance of the approach because it is 

amenable to both the quality of the raw video and the identification capabilities of the 

YOLOv5 object detector. 
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Observing Figure 46, one can notice that the case of 10 frames for the 

thresholdFrames parameter was not selected as the desirable value because of its 

counting performance per litter category. Clearly, in this case the proposed technique 

overcounted the litter items belonging to the “Bottles” and the “Buckets” classes. 

From the processing standpoint, undercounting detected objects in the video footage 

bears more weight than overcounting. In this context, the value of thresholdFrames 

parameter equals to 20 was chosen as it yielded the best counting performance. 

Additionally, as demonstrated in Figure 46, increasing the value of thresholdFrames 

beyond 30 frames does not affect the number of tallied objects as the accuracy of the 

proposed counting method remains unchanged. 

Collectively, the findings from the utilisation of the ROI line and the centroid 

tracking methods attained comparable counting accuracy of 95% when screening out 

marine debris and marine life appearing in the same video recording. Owing to the 

more reliable results generated by the centroid tracking method, it proved more adept 

than the ROI line technique. And this thanks to the ability of the centroid tracking 

approach to trace the geometric centre of the bounding box of a detected object or 

organism. In particular, the ROI line approach performed counting during the 

temporal instance at which the item crossed the line, while the centroid tracking 

tracked an object over the entire time duration that the object appeared on screen. 

Apparently, for the ROI line counting method, erroneous counts can result if the 

centre of the bounding box of a detected object is present within the coordinates of the 

ROI line for multiple frames. Along with the previous observations, the accuracy of 

the ROI line counting method was also found to be dependent on the speed at which 

objects are screened in the raw video, leading to erroneous counting results when 

projected too fast. Justified on the earlier reasoning, the centroid tracking counting 

method was selected to be coupled with the YOLOv5-based object detector to 

estimate the number of marine litter and sea life illustrated in video recordings. 
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4.5.3. Expanding the number of object categories 

In order to broaden the scope of the proposed counting method elaborated upon in 

the previous sub-section (refer to §4.5.2), which is based on the YOLOv5 object 

detector and the centroid tracking technique, an additional two object categories, 

namely, aluminium cans and cigarette butts, were introduced to the custom image 

dataset. Collectively, the new image dataset is comprised of nine categories of 

objects: (1) plastic bottles, (2) plastic buckets, (3) plastic bags, (4) fishing nets, (5) 

plastic straws, (6) food wrappings, (7) a fish species, (8) aluminium cans, and (9) 

cigarette butts. Images belonging to this dataset were mainly retrieved from ImageNet 

(Krizhevsky et al., 2017) while others were donated by the Algalita organisation 

(Algalita, 2014b). Additionally, some of the images were shared by the Debris 

Tracker— an open data citizen scientist movement. In aggregate, the new image 

dataset contained 2,050 images from all nine categories of marine litter and sea life. 

 

Figure 47: Graph (a) depicts the training loss while chart (b) presents the testing mAP 

of the YOLOv5 image classifier applied to the 9 categories of objects. 

The YOLOv5 object detector was trained and tested on the new image dataset 

which contained the nine object categories. Followed then, 80% of the images were 

allocated to the training set while the remaining 20% of the images were assigned to 

the test set. Findings pertaining to the training and testing performance of the object 

detector on the nine categories of marine litter and a fish species are displayed in 

Figure 47. A testing mAP of 99.4% and a training loss of 0.007 were realised by the 

YOLOv5 object detector. In tandem with expanding the number of object categories, 
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one would expect a deterioration in the mAP of the object detector. But this did not 

happen in the preceding case because the mAP of the method remained at the same 

level of almost 99.5% when YOLOv5 trained on the seven categories (refer to §4.3). 

Evidently, these qualities characterise the YOLOv5 object detector as robust and 

reliable. 

In the meantime, the performance and trustworthiness of the object detector are 

better served by the mAP that the detector attained when assessed on the validation 

set. Henceforth, the YOLOv5 object detector was validated on 450 freshly seen 

images belonging to the nine object categories. At this point, the detector scored a 

validation mAP of 89.4%. In particular, almost for all of the object classes the method 

realised enviable average precision of at least 88.3%, except for the “Wrappings” 

category. Exhibiting a precision of 56.3% the wrappings performed the poorest 

possibly due to the complicated shape or colour of food wrappings present in the 

images of the validation set. 

 

Figure 48: Screenshots demonstrating the application of the YOLOv5 object detector 

and the centroid tracking method on an actual field video. 

Thereafter, the YOLOv5 object detector, coupled with the centroid tracking 

counting technique, was applied to a new actual field video. Embedded in the new 
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video were items from all of the object categories except the fish species which was 

difficult to film in the marine environment. Moreover, the actual field video was 

created by a collage of short films capturing marine debris at a selected number of 

coastlines and natural settings. Collectively, the new video contained 7 plastic bottles, 

3 plastic bags, 1 group of plastic straws, 4 plastic buckets, 1 fishing net, 11 food 

wrappings, 5 aluminium cans, and 11 cigarette butts, totalling 43 articles of marine 

debris. When the YOLOv5 object detector examined this video, the centroid tracking 

method successfully counted 4 plastic bottles, 2 plastic bags, 1 plastic bucket, 2 

fishing nets, 10 food wrappings, 4 aluminium cans, 11 cigarette butts, and no cluster 

of plastic straws. In aggregate, 34 marine litter items were successfully tallied by the 

method, which translated into a counting accuracy of 79%.  

Figure 48, which reflects the abovementioned counting capabilities, depicts four 

screenshots extracted from the actual field video when processed by the YOLOv5 

object detector and the centroid tracking counting method. Carefully observing Figure 

48, the proposed method assigned a bounding box, a class label and a confidence 

score on each detected marine litter item. In particular, each of the four images in this 

figure displays the item count per litter category until a specific frame as obtained 

from the centroid tracking method. These object counts appear on the left-hand side of 

each screenshot with green letters. 

It is worth noting that the performance of a counting algorithm relies heavily on 

the identification capabilities of the YOLOv5 object detector. Apparently, the findings 

presented here cannot directly compare with what the detector detects and what the 

counting technique eventually counts. For example, in some cases the YOLOv5 

object detector attached a wrong label to some objects, which produced an incorrect 

number of counted items for that class. At the same time, the manner with which 

videos are recorded fundamentally affects the performance of the object detection and 

counting technique. Clearly, high-resolution videos that were filmed slowly while 

offering adequate exposure for each object to appear on screen for an ample amount 

of time, were preferable. Not only does this boost the likelihood to correctly classify a 

given object but it can also diminish the probability for an object to be differentially 
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classified between frames. As a result, the label that is most often associated with the 

object is most likely to be correctly counted over others. 

4.6. Detection of microplastics 

In this part, the results emanating from the detection of microplastics using the 

ISA500 hydro-acoustic device are presented. Two experiments were conducted here 

to scrutinise the detection capabilities of this sensor when used to discover 

microplastics in the fresh water. The first experiment deployed the preceding sensor 

in a small water tank while the second installed the same sensor in a bigger water 

tank. In summary, the research findings from the two experiments are presented in the 

following sub-sections.  

4.6.1. Experiment I 

Starting, the first experiment was designed to test the detection capabilities of the 

ISA500 sensor in terms of discovering microplastics in fresh water. The ISA500 

sensor was installed in a small tank filled with water, as demonstrated in Figure 49. 

The small tank’s internal dimensions measured 45.5 cm, in length, by 63 cm wide, 

and 38 cm deep. During experiment I, the ISA500 sensor was hung by a metallic 

holder in a horizontal orientation under the surface of the water and the microplastics 

were suspended in front of the sensor. 

 

Figure 49: The small tank was filled with fresh water and the ISA500 sensor was 

immersed in the water. 
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Instrument measurements were enabled by the ISA500 sensor software which 

permitted the adjustment of some of its parameters. Table 10 presents the sensor 

parameters that were altered during experiment I. The frequency of the sensor was set 

to the highest possible value of 600 kHz, which is deemed suitable for tracing 

microplastics in the water. The length of the sound pulse was set to 2 μs which is 

possible at 100% of its amplitude. Note that the speed of sound in water is 1,482 m/s 

while the initial echo from the first obstacle was recorded by the ISA500 sensor. 

Discarding any false readings from the surroundings of the sensor, its detection range 

was set to be between 0.1 m and 0.4 m. Practically, this means the sensor was able to 

detect objects located at a maximum distance of 40 cm from itself. 

Table 10: The parameters of the ISA500 sensor that were adjusted during experiment 

I. 

Parameter Value/Setting 

Frequency 600 kHZ 

Pulse length 2 μs 

Pulse amplitude 100% 

Speed of sound 1,482 m/s 

Maximum range 0.4 m 

Detection mode First echo 

 

All microplastic samples had to be prepared for the needs of experiment I. 

Initially, small pieces were cut from different plastic materials made of thermoplastic 

polyester (PET), polystyrene (PS), high-density polyethylene (HDPE) and 

polypropylene (PP). Later on, microplastics were hung from a thread, as illustrated in 

Figure 50 (a). The microplastics sizes measured 5×5 mm2, 4×4 mm2, 3×3 mm2, 2×2 

mm2 and 1×1 mm2 and in all cases their thickness was about 0.3 mm. Lastly, both the 

ISA500 sensor and the microplastics were submerged at about 10 cm under the 

surface of the water, while the suspended microplastics were positioned in front of the 

sensor, as displayed in Figure 50 (b). 
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The ISA500 sensor emitted a sound pulse that propagated underwater until it 

encountered the microplastic piece. Upon returning, the reflected echo was recorded 

by the ISA500 sensor which is able to deduce the range measurement which expresses 

the distance of the microplastic from the sensor’s face. Along with range 

measurements, the sensor also registers the energy level and the correlation factor of 

the object’s reflected echo. The energy level is the energy of the reflected echo and 

ranges between 0 to 1 where a value of 1 corresponds to full saturation of the ISA500 

sensor. The correlation factor is a quality factor of the returned echo, spanning from 0 

to 1. According to Table 11, a measurement with a high correlation factor and a low 

or a high energy level is probably a good reading. Since all the measurements attained 

very high correlation factors close to 1, only the energy level from the examined 

microplastics is presented and discussed hereafter. 

 

Figure 50: Picture a) shows the plastic pieces that were tagged to threads while image 

b) displays a microplastic suspended in front of the ISA500 sensor. 

Table 11: The combination of energy level and correlation factor which result in 

trustworthy measurements for the ISA500 sensor. 

 Low energy level High energy level 

Low correlation 
Weak signal, probably false 

reading 

High noise level, most likely a 

false reading 

High correlation 
Weak signal but likely a good 

reading 

Ideal conditions, very 

trustworthy reading 
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Figure 51: The energy level for all material sizes when the microplastics were placed 

at a distance (D) of 14 cm away from the ISA500 sensor. 

Each microplastic was placed at a distance (D) of 14 cm, 23 cm and 30 cm from 

the sensor’s face and the energy level of each microplastic item was recorded. Driven 

by the need to distinguish microplastics from other materials, the energy level from 

three metallic materials, such as Tinplate, Copper, and Aluminium, was also studied. 

Figure 51, Figure 52 and Figure 53 present the energy level of all materials at 

distances D = 14 cm, 23 cm and 30 cm from the ISA500 sensor’s face, respectively. 

The orange colour in all figures corresponds to the object’s size of 5×5 mm2, the 

purple refers to a size of 4×4 mm2, the light blue colour to a 3×3 mm2, and the brown 

colour to a size of 2×2 mm2. Energy level measurements for size 1×1 mm2 do not 

appear in these figures, as the ISA500 sensor could not obtain any range measurement 

for this size. This happens because the wavelength of the sound pulse is very small 

and the quality of the reflected echo attenuates with an increasing distance between 

the object and the sensor, or the decreasing size of objects. 
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Figure 52: The energy level for all the material sizes situated 23 cm (D) away from 

the ISA500 sensor. 

 

Figure 53: The energy level for all the material sizes located 30 cm (D) from the 

ISA500 hydro-acoustic device. 

Inspecting Figure 51, Figure 52 and Figure 53, it was realised that for all the 

distances from the ISA500 sensor and for the largest size, that is 5×5 mm2, some 

plastic materials display lower energy levels compared to certain metals. More 

precisely, microplastics from PET, PS and HDPE materials exhibited a lower energy 

signature than Tinplate and Aluminium. This trend was recurrent for smaller size 
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pieces and disappears at the smallest size of 2×2 mm2 located at a distance of 30 cm 

from the ISA500 sensor’s face. 

 

Figure 54: Energy levels and their statistical errors of all materials at distances D = 

10, 15 and 20 cm from the ISA500 sensor’s face. The area of all pieces measured 5×5 

mm2. 
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In view of some irregularities in the energy level of the reflected echo from the 

microplastics and the metallic pieces, it was decided that more measurements were 

needed in order to validate the detection capability of the IS500 sensor. For that 

reason, the material pieces were positioned at new distances D = 10 cm, D = 15 cm, 

and D = 20 cm from the ISA500 sensor’s face, and several measurements for the same 

material were obtained. Due to time constraints, only the biggest size (5×5 mm2) of 

material pieces was tested in the new assessments. Consequently, the average value of 

the energy level of their reflected echoes and their statistical error were calculated and 

presented in Figure 54. 

Observing Figure 54, it is evident that microplastics tend to possess a lower 

energy level of their reflected echoes compared to the energy level of metallic 

materials. However, no clear pattern helps distinguish between microplastics and 

metallic materials using only the suggested ISA500 hydro-acoustic device. From this 

analysis, it is clear that the ultrasonic sensor alone is not a trustworthy device for 

differentiating microplastics from other materials or recognising the type of 

microplastic. Here it is important to mention that probably the best way for detecting 

and categorising microplastics into their distinct plastic types is using spectroscopic 

techniques like FT-IR analysis or Raman spectroscopy (refer to §2.2). 

Summarising, the ISA500 hydro-acoustic device was demonstrated to be capable 

of detecting microplastics in the water. Still further tests were deemed necessary to 

tell if the ISA500 hydro-acoustic device can detect microplastics at longer distances. 

Hence, a new experiment was conducted in a bigger water tank and the experimental 

findings of this assessment are discussed in the following sub-section. 

4.6.2. Experiment II 

A more systematic investigation of the detection of microplastics in fresh water is 

outlined in Experiment II which utilises the ISA500 hydro-acoustic device and a 

water tank that is bigger than the first reservoir used in Experiment I (refer to §4.6.1). 

The big tank’s internal dimensions measure 1.2 m, in length, by 1.2 m wide, and 1 m 

deep, as displayed in Figure 55. The tank was filled with fresh water and the ISA500 
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hydro-acoustic device was hung by a metallic holder, at a horizontal position, at the 

top right-hand corner of the tank. The sensor was submerged 30 cm below the water 

surface and the plastic and metallic pieces were placed in front of the sensor at longer 

distances (D) compared to experiment I. These locations included 10 cm, 15 cm, 30 

cm, 45 cm, 60 cm and 90 cm. 

During experiment II, microplastics and metallic pieces made of PET, PS, HDPE, 

PP, Tinplate, Copper, and Aluminium were tested, respectively. Moreover, the biggest 

size of each microplastic and metallic piece was used here, which measure 5×5 mm2, 

and the energy level and its statistical error was recorded for each material piece. 

Figure 56 depicts the previous findings from all material pieces, located at distances D 

= 10 cm, 15 cm, 30 cm, 45 cm, 60 cm and 90 cm from the sensor’s face. 

 

Figure 55: Snapshot of the water tank and the ISA500 sensor used in experiment II. 

Examining the individual graphs, at Figure 56, it was observed that the ISA500 

sensor is still capable of discovering microplastics in the water at extended distances 

which reach up to ≈1 m. In particular, for the 10 and 15 cm distances, as illustrated in 

Figure 56 (a) and (b), the energy level scale of the items’ reflected echoes is almost 

doubled compared to their respective energy level scale at longer distances. This is 

expected because at longer distances, the reflected sound pulse travelled over an 

extended length and a fraction of its energy attenuated in the water. 
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Figure 56: Recorded energy levels from all materials located at D = 10, 15, 30, 45, 60 

and 90 cm from the ISA500 sensor’s face. 

Focusing on Figure 56 (a), which displays the energy level from all materials, at D 

= 10 cm, microplastics exhibit a slightly smaller energy level compared to metallic 

pieces but no clear pattern is observed for the rest of the distances. Although 

experiment II provided a more systematic framework for investigating the energy 

level of all materials, at various distances from the sensor, the information provided 

here is still insufficient. That is, measurements do not provide a conclusive trend that 



115 
 

could potentially differentiate microplastics from other materials let alone among 

them. Nevertheless, from this analysis it is apparent that the ISA500 sensor is not a 

suitable device to distinguish microplastics from other materials or characterise the 

type of plastic. This is because this sensor can primarily provide details about the 

proximity of the submerged microplastics together with the energy signatures of their 

reflected echoes. 

To sum-up, the research findings from experiments I and II have revealed that the 

ISA500 hydro-acoustic device is not suitable for detecting and characterising 

microplastics in fresh water. Instead, analytical techniques are more suitable for 

identifying different types of microplastics or distinguishing them from other material 

items. Presently, some of the best techniques used to detect and characterise 

microplastics comprise Raman and FT-IR spectroscopy. 
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4.7. Results discussion 

Initially, this research dealt with the image classification of three categories of 

plastic litter floating at the sea surface using the BM. Having parametrically tested the 

performance of the particular method, it was realised that 4,000 images in each object 

category after DA manipulations and 80% of these images to be used to construct the 

training set and the remaining 20% for the test set, provided the best classification 

accuracy of ≈86%. Additionally, the combination of the Ridge and the Lasso 

regressions methods, ℓ1_ℓ2, proved to be the best regularizer for the specific 

classification task. Driven by the need to enhance the sophistication, the robustness, 

and the adaptability of the BM image classifier so as to categorise a diverse spectrum 

of plastic litter and sea life at the sea and the shorelines, another more elaborate BM 

image classifier was constructed. 

The more rigorous BM image classifier incorporated improvements which relate 

to some parameters of the BM model and the number of object categories in the 

marine debris and sea life image dataset. The preceding improvements led to an 

increase in the overall classification accuracy of the BM. That is, expanding the 

number of epochs from 6 to 50, shrinking the batch size from 16 to 5 images, while 

increasing the number of object classes in the image dataset from 3 to 8, raised the 

classification accuracy of the BM by 4%, which topped ≈90%. Additionally, the 

quality of the images in the custom dataset was also improved by adding new high-

resolution images that were carefully selected to display good representations of 

plastic litter encountered in the marine environment. Images in the enhanced dataset 

also depicted plastic litter floating at the sea surface or laying at the coastlines. Lastly, 

the ability of the BM to classify images from a variety of object classes supplemented 

also by a new class of unrelated objects, rendered the method more robust. 

Next step involved the application of the YOLOv3, YOLOv4, and YOLOv5 

object detection algorithms to the marine debris classification task. Among all of the 

examined YOLO tools, YOLOv5 was the most adept algorithm for detecting and 

localising multiple plastic litter and a fish species in images and video footage. 

Applied to newly seen images of plastic debris, the particular tool realised an 
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improvement of ≈33% in the validation mAP, which peaked at 92.4%. YOLOv5 also 

attained a 32% increase in the validation mAP which topped at 74.5% when applied 

to real field video footage illustrating items from the seven object categories. Of the 

three YOLO tools, the YOLOv5 object detector realised real-time object detection of 

34 FPS when processing the video content. Owing to its performance, YOLOv5 is 

rightly the most powerful tool of the YOLO family as applied to the marine debris 

classification task. 

The YOLACT++ instance segmentation tool was also used in this study to detect, 

localise and segment marine plastics and sea life in images and video content. 

Processing a real field marine debris video, the particular scheme realised the highest 

validation mAP of 75.6% among all examined DL tools. Equally useful, the 

YOLACT++ applied a mask on each detected object delineating its geometry. For this 

reason, the YOLACT++ tool was selected to construct an intelligent method tasked 

with identifying, localising and mapping the shape of plastic debris in the marine 

environment. Utilising real field images depicting plastic litter from six beaches, in 

Cyprus, the YOLACT++-based intelligent method detected a total of 52 objects 

belonging to four categories of plastic debris, namely, bottles, bags, straws and food 

wrappings. By analogy, the particular technique predicted a plastic litter density of 

0.035 items/m2 for the six beaches. 

Expanding the investigation, an additional six beaches were surveyed in Cyprus 

during a second beach expedition while the collected video recordings were used to 

validate and broaden the aforementioned plastic litter density. During the second 

beach survey, the YOLACT++-based intelligent method traced a total of 146 plastic 

litter items from all seven object categories which consisted of plastic bags, bottles, 

buckets, straws, fishing nets, food wrappings and a fish species. Concurrently, the 

new plastic litter density estimated from the second beach investigation equated into 

0.052 items/m2. The deviation in the plastic litter densities of 0.035 items/m2 and 

0.052 items/m2 from the first and the second beach surveys, respectively, was 

expected. This is because individual surveys were conducted at different years and 

more litter classes were considered in the calculation of the second plastic litter 
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density. Nonetheless, both plastic litter densities compare well with reported figures 

from other countries (Topçu et al., 2012; Vlachogianni et al., 2017; Asensio-

Montesinos et al., 2019; Nachite et al., 2019) (refer to §4.4.1.1 and §4.4.1.2). The 

compatibility of the results from this research work and other studies done in other 

parts of the world, render the YOLACT++-based intelligent method capable of being 

applied in other geographical regions too. 

Moreover, two counting techniques, namely, the ROI line and the centroid 

tracking, were coupled with the YOLOv5 object detector to identify and tally plastic 

debris items and a fish species contained in actual field video. Even though both 

counting methods attained comparable counting accuracy, the centroid tracking 

method proved more competent than the ROI line technique because it tracked the 

detected item over the entire time duration that the object appeared on screen. Fairly, 

the centroid tracking counting method, coupled with the YOLOv5 object detector, 

was selected for estimating the abundance of litter items from video footage. When 

the proposed counting technique processed a new real field video recorded at various 

marine and natural settings in Cyprus and the US, it successfully detected and tallied 

34 plastic litter items from nine object categories, yielding a counting accuracy of 

≈80%. 

Suffice to mention that the research findings of this study depend on the detection 

capabilities of the DL tool, which was trained, tested and validated on the custom 

marine debris image dataset. Reasonably, DL-based counting method was expected to 

estimate a lower plastic litter abundance compared to what it was manually obtained 

by humans during coastline collection expeditions. For instance, manual beach 

surveys at the Jaz and Blatna beaches, at Montenegro, found 4,227 items per 100 m of 

coastline and 3,831 per 100 m of beachfront belonging to 11 categories of litter, 

respectively (Mandić et al., 2021). Furthermore, at the municipal beach of Ensenada 

in Baja California, Mexico, manual debris collection efforts retrieved a total of 16,474 

objects belonging to 10 categories of litter (Silva-Iñiguez et al., 2003). Even though, 

the findings presented in this research work derive from relatively short shore 
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transects yet the findings appear particularly promising compared to typical manual 

beach surveys.  

Other research investigations which implemented the centroid tracking counting 

method have assumed that all objects presented in video footage are of the same 

category (Wang et al., 2006; Zhang et al., 2009; Watts et al., 2013; Khachatryan, 

2019; Rosebrock, 2021a; Rosebrock, 2021b). As a result, the concept of tracking 

bounding boxes of the detected objects while obtaining the total count of items was a 

simple task. Remarkably, this study has adapted the centroid tracking counting 

method to perform multi-class object counting. Practically, this means that the 

proposed DL-based counting method can tally up to nine categories of marine debris 

and sea life, rendering it a versatile and useful detection and counting method. 

 

Figure 57: Successful identifications of plastic marine litter using the proposed DL-

based object detectors. 

The proposed detection and counting method, which is based on the YOLOv5 and 

the centroid tracking counting technique, can also obviate the use of manual post-
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processing (Gonçalves et al., 2020; Andriolo et al., 2021) of collected marine debris 

images and video footage. Post-processing entails the manual classification and 

counting of presented litter items. Utilising the YOLOv5 and the centroid tracking 

counting technique and a few video recordings, the estimation of the abundance of 

debris items at the seas and the shorelines can be promptly and efficiently calculated 

without any human intervention. Lastly, the research presented herein can also be 

used for improving estimations of the distribution of marine debris in remote 

geographical regions that are not easily accessible by humans. 

Undoubtedly, the proposed DL-based marine debris detectors presented in this 

thesis improve upon other DL techniques (Papakonstantinou et al., 2021; Song et al., 

2021) owing to their ability to distinguish among plastic litter emanating from the 

different plastic sub-categories, like, bottles, bags, buckets, straws, food wrappings, 

etc. To the best of our knowledge, this research outlined the first comprehensive 

attempt to-date for smartly detecting and counting marine debris and sea life captured 

in video footage. Yet, other studies have mostly relied on manual image screening 

after collecting images or video recordings for estimating the abundance of plastic 

debris. 

To sum-up, as demonstrated in images (a), (b), and (c) of Figure 57, the marine 

object detectors proposed in this thesis are capable of discerning and counting plastic 

litter that are floating on or near the sea surface, that are half-buried in the sand, or 

surrounded by other non-marine debris items, like dark or white rocks, green or 

brown vegetation and seaweed. Additionally, the pertinent detectors are capable of 

recognising plastic litter from various geographic regions, as depicted in Figure 57 

(d). Referring to Figure 57 (d), two similar plastic beverage bottles manufactured in 

two distinct continents, such as the European Union (EU) and the United States (US), 

were successfully identified by the DL-based object detectors. Evidently, the 

abovementioned qualities rank the proposed DL-based marine debris detectors as 

robust, reliable and versatile. 

In different parts of the world, depending on the type of marine debris, such as 

beached and floating, researchers utilise various methods for image collection and a 
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variety of ML or DL tools. When estimating the abundance of beached debris in the 

Seto Inland at Sea of Japan, the research team of Takaya et al. (2022), employed a 

drone and a high resolution camera to collect images of debris at the coast. Followed 

then, the collected images were fed into the RetinaNet object detector for estimating 

the beach litter density in the surveyed region (Takaya et al., 2022). Additionally, at 

the Leirosa Beach located on the North Atlantic coast of Portugal, the team of 

Gonçalves et al. (2022), using a drone, collected airborne images depicting marine 

litter which was categorised using the Spectral Angle Mapping (SAM) technique. 

Finally, the researchers produced an image-based litter density map (Gonçalves et al., 

2022).  

Focussing on the Great Pacific ocean gyre, located between Hawaii and 

California, US, the research team of de Vries et al. (2021) deployed a research vessel 

to collect images of debris floating at the sea surface and performed object detection 

using the DL tools of Faster R-CNN and YOLOv5. Based on the detected items in the 

processed images, the team calculated the numerical concentration of the identified 

marine litter (de Vries et al., 2021). Lastly, surveying various coastal areas in the 

Philippines, India, England, Hong Kong and Argentina, and the Gulf of Honduras, the 

team of Booth et al. (2023) utilised multi-spectral satellite data and U-net-based ML 

models to classify floating litter and produce litter density maps. Collectively, all of 

the abovementioned studies post-process the collected image data to estimate the 

marine litter density or to produce debris density maps, process that is often time 

demanding. Contrarily, the abundance of plastic litter obtained in this research 

investigation derived from real field video footage which requires no post-processing 

and is accomplished in real-time. 

4.8. Limitations and challenges 

One of the major difficulties that this research encountered is associated with the 

amount of collected images and video footage. This can be ascribed to the fact that the 

acquisition of debris images often requires the utilisation of expensive equipment, like 

marine research vessels for scanning the sea surface, are time demanding and entail 
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substantial number of human operators or volunteers to cover long beach stretches. 

Thus, to alleviate the problem of small and less representative image datasets, DA 

manipulations were implemented to the image sets which enlarged the pool of training 

samples and improved the overall accuracy of the marine debris classifiers and 

detectors. Additionally, to increase the number of  samples in the marine debris image 

dataset, pictures and filmed videos were also taken at some coasts and onshore in 

Cyprus, California and Hawaii. 

Even though few non-profit organisations make their marine debris image datasets 

publicly available (Deng et al., 2009; Algalita, 2014a; National Oceanic and 

Atmospheric Administration (NOAA), 2018), these datasets do not always have 

practical usability in specific automated marine litter technologies. For example, 

images in the pertinent datasets often illustrate marine debris under certain 

circumstances, like one litter category per image or photographed under special 

indoor scenarios or other controlled setups. Nevertheless, such image datasets are not 

typical of the litter items actually found in real-world aquatic settings. 

Another limitation that affected the performance of the marine debris classifiers 

and detectors is the representation of litter items in the image dataset. Beached debris 

items, for instance, were often fouled by natural “litter like” green vegetation, wood 

pieces, grass, and seashells. Under other circumstances, a debris item was often half-

buried in the sand or degraded or found among rocks of various colours and shapes. 

Such factors made the recognition of marine debris even more difficult. Additionally, 

the image resolution, the shape and the colour of marine litter items frequently 

affected the predictability of the DL-based object detectors. At such, transparent 

marine debris, e.g., fishing nets or plastic bags, or litter items with very similar colour 

to the marine background were less distinguishable by the DL detectors than other 

items with brighter or unique colours. 
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5. Conclusions 

5.1. Concluding remarks 

Driven by the need to help tackle the problem of plastic pollution in the marine 

environment, we have applied various machine learning (ML) and deep learning (DL) 

techniques on the detection of plastic litter encountered at the seas and the shorelines. 

Starting from conventional ML tools from the Computer Vision domain and 

concluding with more sophisticated DL tools from the Artificial Intelligence realm, 

several image classifiers and object detectors able to classify, detect and count plastic 

marine litter and a fish species in still images and video footage were constructed. 

Besides the intelligent recognition of plastic marine debris, the research findings of 

the detection of microplastics in the fresh water using a single hydro-acoustic device, 

namely, the ISA500 sensor, are also presented in this study. Collectively, the main 

contributions of this research emanate from: 

• Broadening the number of object classes that the BM image classifier can 

recognise from 3 to 8, the classifier achieved an improvement of 4% in its 

validation accuracy, which reached 90%. Downsizing the resolution of the 

validation images by 75%, the classification performance of the BM remained 

unaltered. 

• Applying the YOLACT++ intelligent method on images depicting plastic litter 

from 6 beaches in Cyprus, the approach deduced a plastic litter density of 0.035 

items/m2. Extrapolated to the entire shorelines of the island, the intelligent 

method estimated ≈66,000 plastic articles weighing a total of ≈1,000 kg. 

• Inferring the physical dimensions of all documented plastic litter with the aid of 

the OpenCV Contours image processing tool and the YOLACT++ intelligent 

method, results revealed that the dominant object length ranged between 10 and 

30 cm. 

• Supporting the previous plastic litter density of 0.035 items/m2, a new beach 

survey from longer beach stretches and more debris categories produced a plastic 

litter density of 0.052 items/m2. 
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• Achieving real-time object detection of 34 frames per second (FPS) on video 

footage and realising a mean average precision (mAP) of 92.4% on still images, 

the YOLOv5 object detector is suitable for scanning large littered areas in less 

time. 

• Coupling the centroid tracking counting technique with the YOLOv5 detector, the 

approach attained a counting accuracy of ≈80% when validated on an actual field 

video illustrating objects from 9 categories. 

Concluding, this research has spearheaded the application of DL tools to the smart 

detection and quantification of plastic debris in the marine environment. Part of the 

solution to the problem of plastic pollution hinges in the need to intelligently count 

and monitor litter over large areas of interest within a short period of time. Ultimately, 

it is envisioned that the research findings of this study will comprise a leap forward 

towards mapping with more accuracy the abundance of plastic litter in the marine 

environment while helping humanity formulate more efficient strategies in tackling 

them. 

5.2. Research implications and advantages 

The research findings of this doctoral thesis indicate that the most appropriate 

algorithm for counting marine debris illustrated in images and videos is the YOLOv5 

tool coupled with the centroid trucking technique. This joint specific counting 

technique can count up to nine types of litter, namely plastic bottles, plastic buckets, 

plastic bags, plastic straws, a fish species, food wrappings, fishing nets, aluminium 

cans and cigarette butts attaining an accuracy of ≈80%. The proposed counting 

scheme can be used to improve estimations of the abundance of plastic litter in the 

marine environment. Particularly, using an UAV, like a drone, and a high-definition 

camera, airborne images or video footage illustrating plastic litter can be collected and 

processed by the proposed counting technique. In this way, real-time estimations of 

the number of plastic debris littering the surveyed areas can be offered. 

Understanding the real-time distribution of plastic debris in the marine 

environment can help improve marine litter monitoring assessments across the world. 
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Particularly, the competent authorities of each littered region can prioritise these areas 

in terms of conducting in-situ clean ups. Removing plastic debris promptly and 

efficiently from the marine environment can help prevent the dispersion of litter in 

other geographical regions thought the action of wind and water currents. Finally, 

policy makers, Governments and international organisation, like the UN, around the 

world can take advantage of the real-time information provided by the proposed 

counting technique so as to make informed decisions and take mitigation measures to 

protect communities from the detrimental effects of plastic pollution. 

Additionally, improved estimates of plastic litter density around the world can be 

offered using the YOLOv5 object detector and centroid tracking counting technique. 

Littered areas can be monitored more frequently since the proposed counting 

technique requires no human intervention, is based on the detection capabilities of the 

YOLOv5 tool and uses only images and videos to calculate the number of plastic 

marine debris. In this way, more accurate and up-to-date reports about plastic 

pollution can be provided for each region. 

Insights tied to the plastic litter density and the litter’s physical dimensions can be 

also gained from the YOLACT++ marine debris detector. Identifying the size 

distribution of plastic litter in the marine environment will help understand the scale 

and distribution of marine detritus at the seas and the shorelines, and how the 

dimensions of marine debris can impact marine life and aquatic life. Last, but, not 

least, smart tools can provide useful information about the different types and 

dimensions of plastic litter that pollute the marine environment. Grounded on the 

previous justification, more precise risk controls as a part of a general risk 

management approach can be designed by the national authorities of Governments of 

each country so as to eliminate the effects of plastic pollution on marine flora and 

fauna. 

5.3. Future research directions 

Several lines of investigation can broaden this research, but the following topics 

seem to be the most promising ones: 1) increase the number of object classes that a 
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marine debris detector can recognise, 2) add geospatial information to the detection 

process of marine litter, 3) improve estimations of the distribution of plastic debris in 

the marine and natural environment, and 4) further examine the detection of 

microplastics in the water. 

The sophistication of the proposed marine debris detectors can be enhanced 

substantially by broadening the number of item classes that the detectors can 

recognise. This can be done by enriching the training and testing datasets with high 

quality images and videos, allowing the detectors at the same time to better assimilate 

the attributes of images featuring plastic representations. Additionally, integrating a 

marine debris detector and a GPS tracker on a device which is mounted on a boat, the 

device will be able to detect plastic litter and tag them with their exact location. In this 

way, new insights as to the distribution of plastics across the seas and the shorelines 

can be retrieved. 

Moreover, an improved estimation of the abundance of plastic debris in the natural 

environment can be achieved through the contributions of citizen scientists. That is, 

civilians and researchers can photograph littered areas and use these images as input 

to the DL-based object detector. Consequently, the detector is expected to yield a 

more accurate and representative plastic litter abundance. 

Finally, as a part of the MaRITeC-X project at the Cyprus Marine and Maritime 

Institute (CMMI), experiments will be conducted for the detection of microplastics in 

the seawater. By employing a high-quality spectrometer, a powerful computer and the 

ISA500 hydro-acoustic device or other sensors, it will help further investigate the 

dispersion of microplastics in the marine environment.  
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Appendix 

A1. Bottleneck method (BM) 

The modifications made to the Bottleneck method (BM) model which relate to the 

data augmentation and pre-processing manipulations, are illustrated in Figure A1. 

Initially, images belonging to the marine debris dataset were augmented through a 

number of random transformations and normalization operations, as shown in Figure 

A1. For example, parameter rotation_range randomly rotates pictures and gains a 

value ranging from 0°–180°. Operations referred to as width_shift and height_shift 

randomly translate images horizontally and vertically, respectively, while terms 

shear_range, zoom_range, and horizontal_flip randomly apply shearing 

transformations, zoom and flip images, correspondingly. Lastly, term fill_mode fills 

newly created pixels at the empty parts of the images that result after rotation or width 

and height transformations.  

Followed then, the augmented image dataset underwent splitting operation. Since 

hundreds of new images were created in each object category after DA manipulations, 

the augmented data were automatically divided into two sub-sets, namely, the training 

and test sets, using the train_test_split command as described in Figure A1. The split 

command randomly allocates images in training and test sets with the ratio stated in 

its arguments of the parentheses following the train_test_split command. In this case, 

80% of the augmented data was assigned to the training set while the remaining 20% 

was dedicated to the test set. 

After splitting the data into the two sub-sets, the one hot encoding process was 

adopted in the BM image classifier, as depicted in Figure A1. In particular, the 

onehot_encoder.fit_transform command was used to transform multi-class categorical 

variables into numerical features that can easily feed and train the BM classifier and 

improve its classification accuracy. Finally, the prediction part was implemented after 

the BM training and testing process so as to make predictions on the validation 

images and write the class label on them. 
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Figure A1: Code sample displaying the adopted commands for improving the 

identification accuracy of the BM image classifier. 



144 
 

A2. YOLOv5 and counting tools  

A2.1. ROI line counting method 

Designed for counting the number of objects that cross a virtual barrier, the ROI 

line counting method was implemented in the YOLOv5 object detector, as shown in 

Figure A2. In this context, the detected marine debris were counted by the pertinent 

technique as the video pans over the beach or the sea in a single direction with a 

vertical ROI line. The detected litter items were counted by the method when the 

middle of the bounding box (vertically), center = width/2 and box_x =(x1+x2)/2, 

passed the ROI line as described in Figure A2. Next, the location of the ROI line was 

selected and placed in the middle of the video frame. Lastly, a thickness was assigned 

to the ROI line because the bounding box of a detected item may move a number of 

pixels in between video frames and pass the line without the method counting it. 

 

Figure A2: Part of the ROI line counting code implemented in the YOLOv5 object 

detection model.  

A2.2. Centroid tracking counting technique 

During the implementation of the centroid tracking technique in the YOLOv5 

model, the bounding boxes of the detected litter items in each video frame were 

collected and passed into the counting technique, as partly described at the top part of 

Figure A3. Followed then, parameters maxDisappeared and thresholdFrames were 

implemented in the YOLOv5 model for alleviating the problem of overcounting or 

undercounting marine debris items in video footage. Recalling, maxDisappeared 
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parameter refers to the number of frames an object must remain undetected on screen 

for the method to stop tracking it, while the thresholdFrames parameter refers to the 

number of frames that an object must be present on screen for the method to count it. 

 

Figure A3: Part of the centroid tracking counting code implemented in the YOLOv5 

object detector. 

All of the modifications, illustrated in Figure A3, have been made as part of the 

task of counting litter items and sea life from up to nine categories while tallying the 

detected objects with more accuracy. To attain this goal, every time a new object was 

registered and tracked by the centroid tracking counting tool, its respective class label 

as flagged by YOLOv5 marine debris detectors was also recorded. Followed then, if 

the value of the customised thresholdFrames parameter was greater than zero, the 

counting technique calculated the number of frames that the object existed on the 

screen. Once the value thresholdFrames factor surpassed a certain threshold of 60 
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frames, the counting value for the respective object category was incremented by one, 

as shown in Figure A3. 

A3. OpenCV Contours image processing tool 

In this part, the OpenCV Contours image processing tool implemented in the 

YOLACT++ instance segmentation tool for estimating the litter’s physical 

dimensions is explained. Figure A4 demonstrates part of the pertinent image 

processing tool. Once the YOLACT++ marine debris detector applied a mask on each 

recognised litter item, the output images containing the detected litter along their 

coloured masks were stored for post-processing. 

As described in Figure A4, the images depicting the detected litter items were 

converted into grayscale using the cv2.cvtColor() command. Afterwards, a fixed-level 

thresholding was applied to the grayscale image using the cv2.threshold() command, 

in which all of the pixel values that are smaller than the threshold (0 pixels in this 

case), are set to 0. Otherwise, they are set to a maximum value, e.g., 255 pixels, as 

shown in Figure A4. Subsequently, using the cv2.getStructuringElement() command, 

a structuring element of specified size and shape was attained which was later passed 

to cv2.morphologyEx() argument for advanced morphological operations, e.g., erosion 

and dilation. 

 

Figure A4: Part of the OpenCV Contours image processing tool implemented in the 

YOLACT++ detector. 
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In closing, the modified image containing the masked objects was processed by 

the cv2.findContours() command which extracted its contours as explained in Figure 

A4. In simple terms, a contour is a curve connecting together all of the continuous 

points along the boundary of a mask applied by the YOLACT++ detector, that 

happens to have the same colour or pixel intensity. Finally, the cv2.boundingRect() 

command was used to apply a rectangular box around the contour area and measure 

the height and length of the box in pixels. Finally, using a scaling factor of 40 pixels 

to 1 cm, the actual size of the detected litter items were predicted in centimetres using 

the abovementioned methodology. 


